AMIA Annu Symp Proc
January 2024
Clinical trials are indispensable in developing new treatments, but they face obstacles in patient recruitment and retention, hindering the enrollment of necessary participants. To tackle these challenges, deep learning frameworks have been created to match patients to trials. These frameworks calculate the similarity between patients and clinical trial eligibility criteria, considering the discrepancy between inclusion and exclusion criteria.
View Article and Find Full Text PDFAMIA Annu Symp Proc
January 2024
Organ transplant is the essential treatment method for some end-stage diseases, such as liver failure. Analyzing the post-transplant cause of death (CoD) after organ transplant provides a powerful tool for clinical decision making, including personalized treatment and organ allocation. However, traditional methods like Model for End-stage Liver Disease (MELD) score and conventional machine learning (ML) methods are limited in CoD analysis due to two major data and model-related challenges.
View Article and Find Full Text PDFIn multiview multilabel learning, each object is represented by several heterogeneous feature representations and is also annotated with a set of discrete nonexclusive labels. Previous studies typically focus on capturing the shared latent patterns among multiple views, while not sufficiently considering the diverse characteristics of individual views, which can cause performance degradation. In this article, we propose a novel approach [individuality- and commonality-based multiview multilabel learning (ICM2L)] to explicitly explore the individuality and commonality information of multilabel multiple view data in a unified model.
View Article and Find Full Text PDFSocial network analysis is an important problem in data mining. A fundamental step for analyzing social networks is to encode network data into low-dimensional representations, i.e.
View Article and Find Full Text PDF