Publications by authors named "Qiaoyu Cui"

The Landscape Reconstruction Algorithm (LRA) is regarded as the soundest approach for quantifying taxon-specific plant cover from pollen data. The reliability of relative pollen productivity (RPP) estimates is fundamental in the accuracy of quantitative vegetation reconstruction using the LRA approach. Inconsistent RPP estimates produced by different studies can cast doubt on the reliability and applicability of quantitative vegetation reconstruction.

View Article and Find Full Text PDF

The Tibetan Plateau exerts a major influence on Asian climate, but its long-term environmental history remains largely unknown. We present a detailed record of vegetation and climate changes over the past 1.74 million years in a lake sediment core from the Zoige Basin, eastern Tibetan Plateau.

View Article and Find Full Text PDF

Searching for new two-dimensional (2D) Dirac cone materials has been popular since the discovery of graphene with a Dirac cone structure. Based on density functional theory (DFT) calculations, we theoretically designed a HfB monolayer as a new 2D Dirac material by introducing the transition metal Hf into a graphene-like boron framework. This newly predicted HfB monolayer has pronounced thermal and kinetic stabilities along with a Dirac cone with a massless Dirac fermion and Fermi velocities (3.

View Article and Find Full Text PDF

Model-based quantitative reconstruction of past plant cover in Europe has shown great potential for: (i) testing hypotheses related to Holocene vegetation dynamics, biodiversity, and their relationships with climate and land use; (ii) studying long term interactions between climate and land use. Similar model-based quantitative reconstruction of plant cover in China has been restricted due to the lack of standardized datasets of existing estimates of relative pollen productivity (RPP). This study presents the first synthesis of all RPP values available to date for 39 major plant taxa from temperate China and proposes standardized RPP datasets that can be used for model-based quantitative reconstructions of past plant cover using fossil pollen records for the region.

View Article and Find Full Text PDF

The two major aims of this study are (1) To test the performance of the Landscape Reconstruction Algorithm (LRA) to quantify past landscape changes using historical maps and related written sources, and (2) to use the LRA and map reconstructions for a better understanding of the origin of landscape diversity and the recent loss of species diversity. Southern Sweden, hemiboreal vegetation zone. The LRA was applied on pollen records from three small bogs for four time windows between AD 1700 and 2010.

View Article and Find Full Text PDF