Background: Acute respiratory distress syndrome (ARDS) is a life-threatening condition that can develop in critically ill patients. Early identification of risk factors associated with ARDS development is essential for timely intervention and improved patient outcomes. This study aimed to investigate the potential predictors of ARDS in critically ill patients admitted to the intensive care unit (ICU).
View Article and Find Full Text PDFTumour microenvironment (TME) of breast cancer mainly comprises malignant, stromal, immune, and tumour infiltrating lymphocyte (TILs). Assessment of TILs is crucial for determining the disease's prognosis. Manual TIL assessments are hampered by multiple limitations, including low precision, poor inter-observer reproducibility, and time consumption.
View Article and Find Full Text PDFBorrelia burgdorferi sensu lato (Bb) are a complex of bacteria genospecies that can cause Lyme disease (LD) in humans after the bite of an infected Ixodes spp. vector tick. In Canada, incidence of LD is increasing in part due to the rapid geographic expansion of Ixodes scapularis across the southcentral and eastern provinces.
View Article and Find Full Text PDFThe epithelial-mesenchymal transformation (EMT) process of alveolar epithelial cells is recognized as involved in the development of pulmonary fibrosis. Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung tissue and elevated lactate concentration are associated with the pathogenesis of sepsis-associated pulmonary fibrosis. However, it is uncertain whether LPS promotes the development of sepsis-associated pulmonary fibrosis by promoting lactate accumulation in lung tissue, thereby initiating EMT process.
View Article and Find Full Text PDFMechanical ventilation (MV) is an essential therapy for acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. However, it can also induce mechanical ventilation-induced pulmonary fibrosis (MVPF) and the underlying mechanism remains unknown. Based on a mouse model of MVPF, the present study aimed to explore the role of the angiotensin-converting enzyme/angiotensin II/angiotensin type 1 receptor (ACE/Ang-2/AT1R) axis in the process of MVPF.
View Article and Find Full Text PDFBackground: Fibrosis is a heavy burden on the global healthcare system. Recently, an increasing number of studies have demonstrated that Extracellular vesicles play an important role in intercellular communication under both physiological and pathological conditions. This study aimed to explore the role of extracellular vesicles' in fibrosis using bibliometric methods.
View Article and Find Full Text PDFRecent research has revealed that aerobic glycolysis has a strong correlation with sepsis-associated pulmonary fibrosis (PF). However, at present, the mechanism and pathogenesis remain unclear. We aimed to test the hypothesis that the adenosine monophosphate-activated protein kinase (AMPK) activation and suppression of hypoxia-inducible factor 1α (HIF-1α)-induced aerobic glycolysis play a central role in septic pulmonary fibrogenesis.
View Article and Find Full Text PDFZhonghua Wei Zhong Bing Ji Jiu Yi Xue
November 2023
Objective: To demonstrate the mechanism of mechanical ventilation (MV) induced endoplasmic reticulum stress (ERS) promoting mechanical ventilation-induced pulmonary fibrosis (MVPF), and to clarify the role of angiotensin receptor 1 (AT1R) during the process.
Methods: The C57BL/6 mice were randomly divided into four groups: Sham group, MV group, AT1R-shRNA group and MV+AT1R-shRNA group, with 6 mice in each group. The MV group and MV+AT1R-shRNA group mechanically ventilated for 2 hours after endotracheal intubation to establish MVPF animal model (parameter settings: respiratory rate 70 times/minutes, tidal volume 20 mL/kg, inhated oxygen concentration 0.
Recent research has revealed that mechanical ventilation (MV) could initiate ventilator-induced lung injury along with the initiation of the process of pulmonary fibrosis (PF), leading to MV-induced PF (MVPF). However, the underlying mechanism remains unclear. This study aimed to explore the role of MV-induced extracellular vesicles (MV-EVs) and the c-Jun N-terminal kinase (JNK) signalling pathway in the pathogenesis of MVPF in vivo and in vitro.
View Article and Find Full Text PDFFront Med (Lausanne)
July 2023
Background: The coronavirus disease 2019 (COVID-19) is an acute infectious pneumonia caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection previously unknown to humans. However, predictive studies of acute respiratory distress syndrome (ARDS) in patients with COVID-19 are limited. In this study, we attempted to establish predictive models to predict ARDS caused by COVID-19 via a thorough analysis of patients' clinical data and CT images.
View Article and Find Full Text PDFObjective: For respiratory failure patients, mechanical ventilation (MV) is a life-saving therapy to maintain respiratory function. However, MV could also cause damage to pulmonary structures, result in ventilator-induced lung injury (VILI) and eventually progress to mechanical ventilation-induced pulmonary fibrosis (MVPF). Mechanically ventilated patients with MVPF are closely related to increased mortality and poor quality of life in long-term survival.
View Article and Find Full Text PDFMechanical ventilation (MV) has become a clinical first-line treatment option for patients with respiratory failure. However, it was unclear whether MV further aggravates the process of sepsis-associated pulmonary fibrosis and eventually leads to sepsis and mechanical ventilation-associated pulmonary fibrosis (S-MVPF). This study aimed to explore the mechanism of S-MVPF concerning integrin β3 activation in glycometabolic reprogramming of lung fibroblasts.
View Article and Find Full Text PDFBackground: Acute kidney injury (AKI) is a prevalent and serious complication among patients with sepsis-associated acute respiratory distress syndrome (ARDS). Prompt and accurate prediction of AKI has an important role in timely intervention, ultimately improving the patients' survival rate. This study aimed to establish machine learning models to predict AKI via thorough analysis of data derived from electronic medical records.
View Article and Find Full Text PDFRecent clinical research has revealed that mechanical ventilation (MV) can initiate pulmonary fibrosis and induce mechanical ventilation-induced pulmonary fibrosis (MVPF). However, the underlying mechanism remains largely uncharacterized. Based on a mouse model of MVPF and an alveolar epithelial cell cyclic strain model, the present study explores the possible mechanism of MVPF.
View Article and Find Full Text PDFFront Public Health
October 2022
Background: The coronavirus disease 2019 (COVID-19) becomes a worldwide public health threat. Increasing evidence proves that COVID-19-induced acute injuries could be reversed by a couple of therapies. After that, post-COVID-19 fibrosis (PCF), a sequela of "Long COVID," earns rapidly emerging concerns.
View Article and Find Full Text PDFMechanical ventilation (MV) can induce pulmonary fibrosis. This study aims to investigate whether MV-induced pulmonary fibrosis is associated with aerobic glycolysis and seeks to uncover the underlying mechanisms mediated by integrin β3-pyruvate kinase M2 (PKM2) pathway. PKM2 knockdown or inhibition, integrin β3 knockout or inhibition and wild-type mice were exposed to MV (20 mL/kg) for 2 h.
View Article and Find Full Text PDFAnticoagulation in sepsis-associated disseminated intravascular coagulation (DIC) remains uncertain. The aim of this study was to investigate whether unfractioned heparin (UFH) could improve clinical outcomes in patients with sepsis-induced coagulopathy (SIC). Septic patients with SIC were identified from the Medical Information Mart for Intensive Care (MIMIC)-III database.
View Article and Find Full Text PDFRecent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung fibroblasts is closely associated with the pathogenesis of septic pulmonary fibrosis. Nevertheless, the underlying mechanism remains poorly defined. In this study, we demonstrate that LPS promotes c-Jun N-terminal kinase (JNK) signaling pathway activation and endogenous tumor necrosis factor-α (TNF-α) secretion in pulmonary macrophages.
View Article and Find Full Text PDFDuring cardiopulmonary bypass (CPB), pulmonary ischemia/reperfusion (I/R) injury can cause acute lung injury (ALI). Our previous research confirmed that abnormal high-mobility group box 1 (HMGB1) release after CPB was closely related to ALI. However, the mechanism underlying the HMGB1-mediated induction of ALI after CPB is unclear.
View Article and Find Full Text PDFMetabolic reprogramming plays a critical role in many diseases. A recent study revealed that aerobic glycolysis in lung tissue is closely related to pulmonary fibrosis, and also occurs during lipopolysaccharide (LPS)-induced sepsis. However, whether LPS induces aerobic glycolysis in lung fibroblasts remains unknown.
View Article and Find Full Text PDFLipopolysaccharide (LPS)-induced autophagy inhibition in lung fibroblasts is closely associated with the activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-Akt-mTOR) pathway. However, the underlying mechanism remains unknown. In this study, we demonstrated that LPS activated the PI3K-Akt-mTOR pathway and inhibited lung fibroblast autophagy by depleting thymocyte differentiation antigen-1 (Thy-1) and upregulating integrin β3 (Itgb3).
View Article and Find Full Text PDFPulmonary fibrosis is a major cause of death in patients with acute respiratory distress syndrome (ARDS). Our previous study revealed that lipopolysaccharide (LPS) challenge could lead to mouse lung fibroblast proliferation. Additionally, inhibition of autophagy in lung fibroblasts was also reported to be crucial during the process of pulmonary fibrosis.
View Article and Find Full Text PDF