Shrubland ecosystems across Europe face a range of threats including the potential impacts of climate change. Within the INCREASE project, six shrubland ecosystems along a European climatic gradient were exposed to ecosystem-level year-round experimental nighttime warming and long-term, repeated growing season droughts. We quantified the ecosystem level CO fluxes, i.
View Article and Find Full Text PDFA new kind of covalent organic framework (COF) was first utilized as an stationary phase for open-tubular electrochromatography (OT-CEC) by in situ synthesis immobilized method at room temperature. On the basis of our previous work, 4,4',4″-(1,3,5-Triazine-2,4,6-triyl)trianiline (TZ) and 2,5-bis(2-propyn-1-yloxy)-1,4-benzenedicarboxaldehyde (BPTA) were employed as building blocks for the synthesis of COF TZ-BPTA. The coated capillary and COF TZ-BPTA were characterized by scanning electron microscopy (SEM).
View Article and Find Full Text PDFFluorinated porous materials, which can provide specific fluorine-fluorine interaction, hold great promise for fluoride analysis. Here, a novel fluorinated covalent-organic polymer was prepared by using 2,4,6-tris(4-aminophenyl)-1,3,5-triazine and 2,3,5,6-tetrafluorotelephtal aldehyde as the precursors and introduced as stationary phase for open-tubular capillary electrochromatography. The as-synthesized fluorinated covalent-organic polymer and the modified capillary column were characterized by infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry.
View Article and Find Full Text PDFTerrestrial ecosystems have strong feedback to atmospheric CO concentration and climate change. However, the long-term whole life cycle dynamics of ecosystem carbon (C) fluxes and overall balance in some ecosystem types, such as heathland ecosystems, have not been thoroughly explored. We studied the changes in ecosystem CO flux components and overall C balance over a full ecosystem lifecycle in stands of Calluna vulgaris (L.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) with good chemical stability, flexible chemical functionalization, tunable pore sizes, and high specific surface areas have been increasingly employed in the field of fluorescence sensing. In this work, a crystalline vinyl-functionalized COF TzDa-V was facilely prepared through a room-temperature synthetic method via condensation reaction between 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline (Tz) and 2,5-diallyloxyterephthalaldehyde (Da-V). The intermolecular charge transfer (ICT) effect endowed the TzDa-V with fluorescence characteristic, and it was sensitive to trace water and can be quenched due to the disruption of ICT process by water.
View Article and Find Full Text PDFThe transformation of zero-dimensional carbon dots (CDs) to cross-linked nanomaterials is rare. In this work, a novel carbon dots-based covalent organic nanomaterial (CON CDs-TAPB) consisted of 1,3,5-tris(4-aminophenyl)-benzene (TAPB) and carbon dots (CDs) through facile Schiff-base reaction was synthesized and then employed as a stationary phase for open-tubular capillary electrochromatography (OT-CEC). The CON CDs-TAPB and the CDs-TAPB coated column were characterized through Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), UV-spectra experiments and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFCrown ethers are macrocyclic polyether compounds containing multiple -oxo-methylene-structural units, which are often used for recognition of metal ions and ammonium ions. Inspired by the molecular design of rotaxanes, a novel covalent organic nanospheres material (CON ADBC-Tp) constructed by 4,4'-diaminodibenzo-18-crown-6 (ADBC) and 2,4,6-triformylphloroglucinol (Tp) was rationally designed as stationary phase for the separation of compounds containing imidazole structure. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) were carried out to confirm the morphology and composition of ADBC-Tp and ADBC-Tp modified capillary column.
View Article and Find Full Text PDFThe development of novel stationary phases to achieve high-efficiency separation is still an important topic in separation sciences. Covalent organic frameworks (COFs) with the advantages of large specific surface areas, high porosity and stability have attracted great attention in chromatographic field. Here, a novel crystalline covalent organic framework (TzDa-V) was designed and synthesized by condensation reaction between 4,4',4″-(1,3,5-Triazine-2,4,6-triyl)trianiline (Tz) and 2,5-diallyloxyterephthalaldehyde (Da-V) for open-tubular capillary electrochromatography (OT-CEC).
View Article and Find Full Text PDFGlaucoma, characterized with progressive degeneration of retinal ganglion cells (RGCs), is the second frequently leading cause of sight loss in the word after cataract. Baicalin plays a protective role in age-related macular degeneration, retinopathy of prematurity, branch retinal vein occlusion, and ischemia-induced neurodegeneration in the retina. The present study aimed to investigate the role of baicalin in glaucoma.
View Article and Find Full Text PDFBreast cancer is the most common form of cancer among women globally, and chemoresistance is a major challenge to disease treatment that is associated with a poor prognosis. This study was formulated to identify a reliable prognostic biosignature capable of predicting the survival of patients with chemoresistant breast cancer (CRBC) and evaluating the associated tumor immune microenvironment. Through a series of protein-protein interaction and weighted correlation network analyses, genes that were significantly associated with breast cancer chemoresistance were identified.
View Article and Find Full Text PDFCyclic desulfurization-regeneration-denitrification over carbon-based catalysts is a promising technology for SO and NOx simultaneous elimination in steel industry. Regeneration is imperative to the long-term operation of the process, while the research is limited. In this work, Ce modified VO/AC catalyst (CeVOx/AC) with higher desulfurization and denitrification activity was prepared and the effect of cyclic regeneration was investigated.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) are a class of porous materials with high surface area, high porosity, good stability and tunable structure that have been widely used in the separation area. In this work, we have proposed the synthesis of a novel COF composed of 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (Tz) and 1,4-dihydroxyterephthalaldehyde (Da) onto the capillary inner surface for electrochromatographic separation. Fourier transform infrared (FT-IR) spectroscopy, elemental analysis (EA) and scanning electron microscopy (SEM) have facilitated the characterization of the prepared capillary columns.
View Article and Find Full Text PDFCandida antarctica lipase B (CALB) is a natural biocatalyst with an intrinsically strong chiral environment and a high degree of enantio-selectivity, which is widely used in the separation of racemates. Here, a facile and efficient covalent immobilization approach was utilized to immobilize CALB onto the capillary inner wall as a novel chiral stationary phase to explore and broaden its application in the direct chiral separation by electrochromatography. The obtained CALB immobilized capillary column was characterized by scanning electron microscopy (SEM), fluorescence imaging and Fourier transform infrared spectroscopy (FT-IR).
View Article and Find Full Text PDFBackground: Tubular injury plays a crucial role in the pathogenesis of diabetic nephropathy (DN). It is well known that many microRNAs (miRNAs) exert crucial effects on tubular injury. This study intends to explore the effect of miR-142-3p on the apoptosis and oxidative stress of high glucose (HG)-treated renal tubular epithelial cells (HK-2) and its underlying mechanism.
View Article and Find Full Text PDFInorganic perovskite CsPbI Br has advantages of excellent thermal stability and reasonable bandgap, which make it suitable for top layer of tandem solar cells. Nevertheless, solution-processed all-inorganic perovskites generally suffer from high-density defects as well as significant tensile strain near underlayer/perovskite interface, both leading to compromised device efficiency and stability. In this work, the defect density as well as interfacial tensile strain in inverted CsPbI Br perovskite solar cells (PeSCs) is remarkably reduced by using a bilayer underlayer composed of dopant-free 2,2',7,7'-tetrakis(N,N-dip-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD) and copper phthalocyanine 3,4',4″,4'″-tetrasulfonated acid tetrasodium salt (TS-CuPc) nanoparticles.
View Article and Find Full Text PDFCovalent organic frameworks (COFs), considered as a series of newly emerging porous organic materials, have been widely utilized in separation fields. Herein, a novel COF (TFPB-BD) was first employed as stationary phase for high-efficiency capillary electrochromatographic separation. Benzidine (BD) and 1,3,5-Tris-(4-formylphenyl)benzene (TFPB) were selected as organic linkers and then introduced into the aldehyde group modified capillary for the in situ growth of TFPB-BD onto the capillary inner wall at room temperature.
View Article and Find Full Text PDFHydrophilic column combined with mobile phase containing high content of water is a green method for the separation of polar compounds, but there are few related studies, and the separation efficiency and performance of existing columns still needs to be improved. In this work, a novel monolithic column for separation of hydrophilic compounds under both high water content and HILIC condition, was prepared by in-situ polymerization using 4-vinylbenzoic acid (VBA) and 1-(Acryloyloxy)-3-(methacryloyloxy)-2-propanol (AMAP) as functional monomers. The poly(VBA-co-AMAP) monolithic column showed good separation performance towards various polar compounds under different chromatographic conditions based on the π-interaction, hydrophobic and hydrogen bonding interactions provided by 4-vinylbenzoic acid functional monomer.
View Article and Find Full Text PDFHerein, the fabrication of a fascinating multifunctional cyclodextrin (CD) chiral stationary phase and its chiral separation performance in capillary electrochromatography are proposed. A facile interfacial polymerization was used to anchor ethanediamine-β-cyclodextrin (EDA-β-CD) polymerized with trimesoyl chloride (TMC) and to form the chiral stationary phase (CSP) composite onto the surface wall of the capillary. The characters of prepared columns were confirmed by Fourier transform infrared spectroscopy (FT-IR), X-ray Photoelectron Spectrometer (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS).
View Article and Find Full Text PDFAllylglycine, a conventional amino acid derivative, possesses typical zwitterionic and hydrophilic functionalities deriving from the carboxyl and amino groups in its structure. A novel monolithic column poly(allylglycine-co-1, 3, 5-triacryloylhexahydro-1, 3, 5-triazine) (AGly-co-TAT) with powerful hydrophilic selectivity and obvious zwitterionic feature was synthesized successfully with the monomer allyglycine and the cross-linker 1, 3, 5-triacryloylhexahydro-1, 3, 5-triazine through in-situ copolymerization for capillary electrochromatography. The obtained monolithic column has good permeability.
View Article and Find Full Text PDFFluorous affinity means remarkably specific interaction between highly organic fluorides. This work aims to explore the potential of fluoro-functionalized stationary phase for the separation of organic fluorides by means of fluorous-fluorous interaction. Here, by using the Michael addition strategy between 1H,1H,2H,2H-perfluorodecanethiol (PFDT) and polydopamine (PD), a novel fluoro-functionalized stationary phase was synthesized for open-tubular capillary electrochromatography (OT-CEC).
View Article and Find Full Text PDFA series of N-doped carbons were prepared to investigate the effect of different N-containing groups on selective catalytic reduction (SCR) of NOx with NH. Combined the SCR activity with the results of porosity analysis and X-ray photoelectron spectroscopy, it's deduced that the pyridinic N (N-6) rather than the surface area or doped total N was mainly responsible for the promoted SCR activity. The electron paramagnetic resonance and O-temperature programmed desorption (O-TPD) experiments indicated that N-6 created numerous of oxygen vacancy.
View Article and Find Full Text PDFIn this work, we investigate differences in gut microbial diversity driven by drug use or by the widely used methods for drug cessation: methadone maintenance treatment (MMT) and compulsory detention (CD). Methods: 99 participants (28 CD participants, 16 MMT patients, 27 drug users, and 28 healthy controls) were selected using strict inclusion criteria. Nutritional intake and gut microbial diversity were analyzed with bioinformatics tools and SPSS 20.
View Article and Find Full Text PDFReclamation of cropland from grassland is regarded as a main reason for grassland degradation; understanding succession from abandoned cropland to grassland is thus crucial for vegetation restoration in arid and semiarid areas. Soil becomes dry when cropland is reverted to grassland, and enzyme and osmotic adjustment compounds may help plants to adapt to a drying environment. Croplands that were abandoned in various years on the Ordos Plateau in China, were selected for the analysis of the dynamics of enzymes and osmotic adjustment compounds in plant species during vegetation succession.
View Article and Find Full Text PDF