IEEE J Biomed Health Inform
November 2023
Since Magnetic Resonance Imaging (MRI) requires a long acquisition time, various methods were proposed to reduce the time, but they ignored the frequency information and non-local similarity, so that they failed to reconstruct images with a clear structure. In this article, we propose Frequency Learning via Multi-scale Fourier Transformer for MRI Reconstruction (FMTNet), which focuses on repairing the low-frequency and high-frequency information. Specifically, FMTNet is composed of a high-frequency learning branch (HFLB) and a low-frequency learning branch (LFLB).
View Article and Find Full Text PDF