Publications by authors named "Qiaoling Kang"

Anode materials for sodium ion batteries (SIBs) are confronted with severe volume expansion and poor electrical conductivity. Construction of assembled structures featuring hollow interior and carbon material modification is considered as an efficient strategy to address the issues. Herein, a novel template-assisted epitaxial growth method, ingeniously exploiting lattice matching nature, is developed to fabricate hollow ordered architectures assembled by SnO nanorods.

View Article and Find Full Text PDF

A novel sheet-like tin-based metal-organic framework exhibited a specific capacity for lithium storage as high as 1033.3 mAh g at 200 mA g with excellent cycling stability. This framework, due to its unique porous structure and multiple lithium storage sites, could better cope with challenges occurring during lithium insertion/extraction than could traditional tin materials.

View Article and Find Full Text PDF

FeO is one of the most important lithium storage materials and has attracted increasing interest owing to its good capacity in theory, abundant reserves, and better security. The utilization of FeO materials is hampered by their inferior cycle performance, low rate performance, and restricted composite variety. Herein, the heterostructure of FeO@SnO with hexahedral structure was manufactured by two- step hydrothermal strategy, while the SnO nanopillars were epitaxially grown in six faces, not in the twelve edges of hexahedral FeO cubes, which comes from maximizing lattice matching on the six surfaces of FeO.

View Article and Find Full Text PDF

The purification of carbon monoxide in H-rich streams is an urgent problem for the practical application of fuel cells, and requires the development of efficient and economical catalysts for the preferential oxidation of CO (CO-PROX). In the present work, a facile solid phase synthesis method followed by an impregnation method were adopted to prepare a ternary CuCoMnO spinel oxide, which shows superior catalytic performance with CO conversion of 90% for photothermal CO-PROX at 250 mW cm. The dopant of copper species leads to the incorporation of Cu ions into the CoMnO spinel lattice forming a ternary CuCoMnO spinel oxide.

View Article and Find Full Text PDF

High-entropy materials (HEMs) exhibit extensive application potential owing to their unique structural characteristics. Structure regulation is an effective strategy for enhancing material performance. However, the fabrication of HEMs by integrating five metal elements into a single crystalline phase remains a grand challenge, not to mention their structure regulation.

View Article and Find Full Text PDF

The design and synthesis of hollow-nanostructured transition metal oxide-based anodes is of great importance for long-term operation of lithium ion batteries (LIBs). Herein, a special hollow bowl-like α-FeO nanostructure is controllably synthesized through a facile hydrothermal technique and exhibits great electrochemical lithium storage performance when used as LIBs anode. Under a facile hydrothermal condition, α-FeO nanostructures evolve from solid pie-like structure to hollow bowl-like structure and finally α-FeO nanorings through the regulation of HPO derived from ionized NaPO·12HO and Ostwald ripening process.

View Article and Find Full Text PDF

Three-dimensional (3D) network structure of metal-organic framework (MOF) can accommodate outstanding electrocatalysis performances, but always collapse during the conversion to active materials or applications process. How to maintain the 3D network when producing active species is of great importance for full application of MOF. Herein, a new MOF material, In[Co(CN)] (In-Co PBA) nanocubes, are firstly synthesized.

View Article and Find Full Text PDF

NiFe alloy catalysts have received increasing attention due to their low cost, easy availability, and excellent oxygen evolution reaction (OER) catalytic activity. Although it is considered that the co-existence of Ni and Fe is essential for the high catalytic activity, the identification of active sites and the mechanism of OER in NiFe alloy catalysts have been controversial for a long time. This review focuses on the catalytic centers of NiFe alloys and the related mechanism in the alkaline water oxidation process from the perspective of crystal structure/composition modulation and structural design.

View Article and Find Full Text PDF

Palladium (Pd) is regarded as a potential non-platinum electrocatalyst to drive oxygen reduction in fuel cells. The development of Pd-based electrocatalysts with high performances through structural engineering is still highly desirable. Herein, a facile one-pot synthesis strategy with the assistance of dual surface protecting agents was developed to fabricate carbon-supported Pd (Pd/C) nanodendrites with high mesoporosity.

View Article and Find Full Text PDF

Exploring cost-effective and general approaches for highly active and stable bifunctional transition metal phosphide (TMP) electrocatalysts towards overall water splitting is greatly desirable and challenging. Herein, a general strategy combining sol-gel and a carbonization-assisted route was proposed to facilely fabricate a series of TMP nanoparticles, including CoP, MoP, FeP, CuP, NiP, PtP, FeNiP, CoNiP, and FeCoNiP, coupled in an amorphous carbon matrix with one-step carbon composite formation. The resultant NiFeP@C exhibits excellent activities as a bifunctional electrocatalyst toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with low overpotentials of 260 and 160 mV, respectively, at 10 mA/cm in 1 M KOH solution.

View Article and Find Full Text PDF

Non-precious, stable and efficient catalysts for the pH-universal hydrogen evolution reaction (HER) are highly desirable to meet the vast energy demands. Herein, we report a facile and scalable strategy using agaric as a precursor to construct a Mo2C-based HER electrocatalyst consisting of ultrafine Mo2C nanoparticles embedded within biomass-derived 3D N-doped carbon nanorod arrays@nanosheet networks (Mo2C@N-CANs). This electrocatalyst is highly active for the pH-universal hydrogen evolution reaction and requires overpotentials of only 82 mV, 100 mV and 350 mV to drive a current density of -10 mA cm-2 in acidic, alkaline and neutral media, exhibiting stable operation for 3000 cycles and 24 h long-term stability.

View Article and Find Full Text PDF

It is a challenging task to seek a highly-efficient electrocatalyst for oxygen evolution reaction (OER) of water splitting. Non-noble Co-based nanomaterials are considered as earth-abundant and effective catalysts to lower overpotential and increase polarization current density of OER. In this work, we reported, for the first time, a "rapid solvent-evaporation" strategy for the synthesis of three-dimensional (3D) cobalt complex hierarchical architectures constructed by two-dimensional (2D) nanosheets.

View Article and Find Full Text PDF

Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area.

View Article and Find Full Text PDF