Publications by authors named "Qiaoli Xie"

The pigmentation of various components leads to different colors of roses. However, the intricate molecular machinery and metabolic pathways underlying rose pigmentation remain largely unexplored. In this study, we determined that pink and black-red petals contain abundant anthocyanins, reaching concentrations of 800 μg/g and 1400 μg/g, respectively, significantly surpassing those in white and yellow petals.

View Article and Find Full Text PDF

The MYB transcription factor family plays a crucial regulatory role in plant growth, development, biological progress, and stress responses. Here, we identified a R2R3-MYB transcription factor gene, , from tomato and characterized its function by gene silencing via RNA interference (RNAi). The results exhibited that the silencing of reduced the sensitivity of tomato seedlings to exogenous ABA.

View Article and Find Full Text PDF

N6-methyladenosine (mA) is a widespread post-transcriptional modification in eukaryotic mRNAs. Proteins with the YTH structural domain act as mA-binding proteins by recognizing the mA modification and regulating mRNA through this recognition. In this study, , a prototypical mA -binding protein gene in the YTH family was expressed in various tissues, and subcellular localization analyses indicated that the SlYTHDF2 protein was localized in the nucleus and cytoplasm.

View Article and Find Full Text PDF

The bHLH transcription factors are important plant regulators against abiotic stress and involved in plant growth and development. In this study, , a gene coding for a prototypical DNA-binding protein in the bHLH family, was isolated, and -overexpression tomato (-OE) plants were generated by Agrobacterium-mediated genetic transformation. transgenic lines manifested higher osmotic stress tolerance than the wild-type plants, estimated by higher relative water content and lower water loss rate, higher chlorophyll, reducing sugar, starch, proline, soluble protein contents, antioxidant enzyme activities, and lower MDA and reactive oxygen species contents in the leaves.

View Article and Find Full Text PDF

Members of the MT-A70 family are key catalytic proteins involved in mA methylation modifications in plants. They play diverse roles at the posttranscriptional level by regulating RNA secondary structure, selective splicing, stability, and translational efficiency, which collectively affect plant growth, development, and stress responses. In this study, we explored the function of the gene SlMTC, a Class C member of the MT-A70 family, in tomatoes by using CRISPR/Cas9 technology.

View Article and Find Full Text PDF

Mitophagy maintains tissue homeostasis by self-eliminating defective mitochondria through autophagy. How mitophagy regulates stem cell activity during hair regeneration remains unclear. Here, we found that mitophagy promotes the proliferation of hair germ (HG) cells by regulating glutathione (GSH) metabolism.

View Article and Find Full Text PDF

Psoriasis is an intractable immune-mediated disorder that disrupts the skin barrier. While studies have dissected the mechanism by which immune cells directly regulate epidermal cell proliferation, the involvement of dermal fibroblasts in the progression of psoriasis remains unclear. Here, we identified that signals from dendritic cells (DCs) that migrate to the dermal-epidermal junction region enhance dermal stiffness by increasing extracellular matrix (ECM) expression, which further promotes basal epidermal cell hyperproliferation.

View Article and Find Full Text PDF

Skin cells actively metabolize nutrients to ensure cell proliferation and differentiation. Psoriasis is an immune-disorder-related skin disease with hyperproliferation in epidermal keratinocytes and is increasingly recognized to be associated with metabolic disturbance. However, the metabolic adaptations and underlying mechanisms of epidermal hyperproliferation in psoriatic skin remain largely unknown.

View Article and Find Full Text PDF

Introduction: Tissues maintain their function through interaction with microenvironment. During aging, both hair follicles and blood vessels (BV) in skin undergo degenerative changes. However, it is elusive whether the changes are due to intrinsic aging changes in hair follicles or blood vessels respectively, or their interactions.

View Article and Find Full Text PDF

MADS-box transcription factors have crucial functions in numerous physiological and biochemical processes during plant growth and development. Previous studies have reported that two MADS-box genes, and play important regulatory roles in the sepal development of tomato, respectively. However, the functional relationships between these two genes are still unknown.

View Article and Find Full Text PDF

ALKBH proteins, the homologs of AlkB dioxygenase, constitute a single-protein repair system that safeguards cellular DNA and RNA against the harmful effects of alkylating agents. ALKBH10B, the first discovered -methyladenosine (mA) demethylase in Arabidopsis (), has been shown to regulate plant growth, development, and stress responses. However, until now, the functional role of the plant ALKBH10B has solely been reported in arabidopsis, cotton, and poplar, leaving its functional implications in other plant species shrouded in mystery.

View Article and Find Full Text PDF

Cytokinin response factors (CRFs) are transcription factors (TFs) that are specific to plants and have diverse functions in plant growth and stress responses. However, the precise roles of CRFs in regulating tomato plant architecture and leaf development have not been comprehensively investigated. Here, we identified a novel CRF, SlCRF6, which is involved in the regulation of plant growth via the gibberellin (GA) signaling pathway.

View Article and Find Full Text PDF

Hexokinase is considered to be the key molecule in sugar signaling and metabolism. Here, we reported that silencing SlHXK1 resulted in a decrease in flower number, increased rate of flower dropping, abnormal thickening of the anther wall, and reduced pollen and seed viability. An anatomical analysis revealed the loss of small cells and abnormal thickening of anther walls in SlHXK1-RNAi lines.

View Article and Find Full Text PDF

Overexpression of SlPRE3 is detrimental to the photosynthesis and alters plant morphology and root development. SlPRE3 interacts with SlAIF1/SlAIF2/SlPAR1/SlIBH1 to regulate cell expansion. Basic helix-loop-helix (bHLH) transcription factors play crucial roles as regulators in plant growth and development.

View Article and Find Full Text PDF

Plant architecture, an important agronomic trait closely associated with yield, is governed by a highly intricate molecular network. Despite extensive research, many mysteries surrounding this regulation remain unresolved. Trihelix transcription factor family plays a crucial role in the development of plant morphology and abiotic stresses.

View Article and Find Full Text PDF

Trihelix proteins are plant-specific transcription factors that are classified as GT factors due to their binding specificity for GT elements, and they play crucial roles in development and stress responses. However, their involvement in fruit ripening and transcriptional regulatory mechanisms remains largely unclear. In this study, we cloned SlGT31, encoding a trihelix protein in tomato (Solanum lycopersicum), and determined that its relative expression was significantly induced by the application of exogenous ethylene whereas it was repressed by the ethylene-inhibitor 1-methylcyclopropene.

View Article and Find Full Text PDF

Homeodomain-leucine zipper (HD-Zip) transcription factors are only present in higher plants and are involved in plant development and stress responses. However, our understanding of their participation in the fruit ripening of economical plants, such as tomato (), remains largely unclear. Here, we report that , a member of the tomato HD-Zip I subfamily, was expressed in all tissues, was highly expressed in breaker+4 fruits, and could be induced by ethylene.

View Article and Find Full Text PDF

Chlorophyll metabolism and chloroplast biogenesis in tomato (Solanum lycopersicum) leaves contribute to photosynthesis; however, their molecular mechanisms are poorly understood. In this study, we found that overexpression of SlERF.J2 (ethylene transcription factor) resulted in a decrease in leaf chlorophyll content and reduced accumulation of starch and soluble sugar.

View Article and Find Full Text PDF

Anthocyanins are water-soluble pigments that can impart various colors to plants. Purple shamrock () possesses unique ornamental value due to its purple leaves. In this study, three anthocyanins, including malvidin 3-O-(4-O-(6-O-malonyl-glucopyranoside)-rhamnopyranosyl)-5-O-(6-O-malonyl-glucopyranoside), delphinidin-3-O-rutinoside and malvidin-3,5-di-O-glucoside, were characterized with ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) in purple shamrock.

View Article and Find Full Text PDF

Our findings indicated that the SlERF.J2-IAA23 module integrates hormonal signals to regulate hypocotyl elongation and plant height in tomato. Light and phytohormones can synergistically regulate photomorphogenesis-related hypocotyl elongation and plant height in tomato.

View Article and Find Full Text PDF

High salinity and drought stresses often cause plants to produce ROS, including hydrogen peroxide (HO) and superoxide (O), which interfere with plant growth and affect crop yield. The transcription factors of the MYB family are involved in responses to biotic and abiotic stresses. Here, we isolated the R2R3-MYB transcription factor gene SlMYB50 and found that silencing of SlMYB50 increased resistance to PEG 6000, mannitol and salt.

View Article and Find Full Text PDF

Opioid use disorder is a chronic brain disease influenced by genetic and epigenetic factors, accounting for approximately 50% of the liability. Adrenergic signaling is involved in opioid use disorder. To demonstrate the associations between methylation alterations in the alpha-1-adrenergic receptor (ADRA1A) gene and opioid use disorder, in the present study, we first examined and compared the methylation levels of 97 CpG sites in the promoter region of the ADRA1A gene in the peripheral blood in 120 patients with heroin use disorder and 111 healthy controls.

View Article and Find Full Text PDF

During evolutionary adaptation, the mechanisms for self-regulation are established between the normal growth and development of plants and environmental stress. The phytohormone jasmonate (JA) is a key tie of plant defence and development, and JASMONATE-ZIM DOMAIN (JAZ) repressor proteins are key components in JA signalling pathways. Here, we show that JAZ expression was affected by leaf senescence from the transcriptomic data.

View Article and Find Full Text PDF