Publications by authors named "Qiaohui Zhou"

Hybrid heterostructures comprising organic and two-dimensional (2D) layered semiconductors hold great promise for light harvesting and optoelectronic applications. Among them, organic materials that exhibit singlet fission (SF) in which one singlet exciton generates two triplet excitons are particularly attractive and can potentially improve the performance of the device. However, SF-enhanced devices require that SF can compete with direct energy/charge transfer from the singlet exciton.

View Article and Find Full Text PDF

Two-dimensional (2D) lead halide perovskites with distinct excitonic feature have shown exciting potential for optoelectronic applications. Compared to their three-dimensional counterparts with large polaron character, how the interplay between long- and short- range exciton-phonon interaction due to polar and soft lattice define the excitons in 2D perovskites is yet to be revealed. Here, we seek to understand the nature of excitons in 2D CsPbBr perovskites by static and time-resolved spectroscopy which is further rationalized with Urbach-Martienssen rule.

View Article and Find Full Text PDF

Two-dimensional lead halide perovskites with confined excitons have shown exciting potentials in optoelectronic applications. It is intriguing but unclear how the soft and polar lattice redefines excitons in layered perovskites. Here, we reveal the intrinsic exciton properties by investigating exciton spin dynamics, which provides a sensitive probe to exciton coulomb interactions.

View Article and Find Full Text PDF

The solvent effect usually plays an important role in triplet-triplet annihilation (TTA) upconversion processes. In this work, we have studied the TTA upconversion kinetics of perylene with Bodipy-phenyl-C60 as the triplet photosensitizer in five solvents, 1,4-dioxane, dichlorobenzene, chlorobenzene, toluene, and tetrahydrofuran (THF). Although no significant solvent effect was observed in steady-state absorption and fluorescence emission spectra, the overall TTA upconversion quantum yields showed a profound dependence on solvent properties, i.

View Article and Find Full Text PDF

Multiple exciton generation (MEG) in semiconductors that yields two or more excitons by absorbing one high-energy photon has been proposed to break the Shockley-Queisser limit and boost photon-to-electron conversion efficiency. However, MEG performance in conventional bulk semiconductors or later colloidal nanocrystals is far from satisfactory. Here, we report efficient MEG in few-layer black phosphorus (BP), a direct narrow bandgap two-dimensional (2D) semiconductor with layer-tunable properties.

View Article and Find Full Text PDF

Non-noble metal plasmonic materials, e.g. doped semiconductor nanocrystals, compared to their noble metal counterparts, have shown unique advantages, including broadly tunable plasmon frequency (from visible to infrared) and rich surface chemistry.

View Article and Find Full Text PDF

Two-dimensional (2D) materials and heterostructures with strong excitonic effect and spin/valley properties have emerged as an exciting platform for optoelectronic and spin/valleytronic applications. There, precise control of the exciton transformation process (including intralayer to interlayer exciton transition and recombination) and valley polarization process structural tuning is crucial but remains largely unexplored. Here, using hexagonal boron nitride (BN) as an intermediate layer, we show the fine-tuning of exciton and valley dynamics in 2D heterostructures with atomic precision.

View Article and Find Full Text PDF

Chemical systems with external control capability and self-recoverability are promising since they can avoid additional chemical or energy imposition during the working process. However, it remains challenging to employ such a nonequilibrium method for the engineering of optoelectronic function and for visualization. Here, we report a functional molecule that can undergo intense conformational regulation upon photoexcitation.

View Article and Find Full Text PDF

A bodipy-C70 dyad was synthesized and applied in triplet-triplet annihilation (TTA) upconversion of perylene as a novel metal-free organic photosensitizer. The photophysical processes were investigated by the methods of steady-state UV-Vis absorption and fluorescence spectroscopy, nanosecond time-resolved transient absorption spectroscopy, cyclic voltammetry, and density functional theory calculations. The bodipy-C70 dyad showed an increased molar extinction coefficient up to 82 300 mol-1 cm-1 at 518 nm compared with the C70 monomer.

View Article and Find Full Text PDF

Drug resistance inhibits the efficacy of doxorubicin in gastric cancer. Phosphatidylinositol 3,4,5-trisphosphate RAC exchanger 2a (P-REX2a) activates the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway by binding to and inactivating phosphatase and tensin homolog (PTEN), which functions as a tumor promoter in a number of types of cancer. However, there is no research concerning the association between P-REX2a expression and drug resistance in gastric cancer.

View Article and Find Full Text PDF

Three new triplet photosensitizers consisting of a bodipy derivative and C moieties were synthesized for triplet-triplet annihilation upconversion of perylene. With the extension of the π-conjugated structure of the bodipy derivative, the three photosensitizers exhibited different absorption wavelengths, e.g.

View Article and Find Full Text PDF

The photochemical reaction between 1,2-naphthoquinone (NQ) and adenine was investigated using nanosecond time-resolved laser flash photolysis. With photolysis at 355 nm, the lowest triplet state T of NQ was produced via intersystem crossing from its singlet excited state. The triplet-triplet absorption of the state contributes three bands of transient spectra at 374, 596 and 650 nm, respectively, in pure acetonitrile and binary water-acetonitrile solutions.

View Article and Find Full Text PDF

Solvent effects play a very important role in photochemical reactions and energy transfer processes in solution; however, these effects are rarely mentioned in the triplet-triplet annihilation (TTA) upconversion fluorescence experiments. In a typical TTA upconversion system of a photosensitizer of diiodo-Bodipy (I2-Bodipy) and a triplet acceptor of perylene, five common inert solvents, hexane, heptane, toluene, 1,4-dioxane, and dimethyl sulfoxide (DMSO), were used to investigate the solvent effects on the overall quantum yield of upconversion fluorescence. Femtosecond and nanosecond time-resolved transient difference absorption spectra were obtained to study the efficiencies of intersystem crossing (ISC) and triplet-triplet energy transfer (TTET).

View Article and Find Full Text PDF

Objectives: To summarize and appraise the available literature regarding the use of the C-urea breath test in the diagnosis of Helicobacter pylori infections in adult patients with dyspepsia and to calculate pooled diagnostic accuracy measures.

Methods: We systematically searched the PubMed, EMBASE, Cochrane Library, Chinese Journals Full-text (CNKI) and CBMDisc databases to identify published data regarding the sensitivity, specificity, and other measures of diagnostic accuracy of the C-urea breath test in the diagnosis of Helicobacter pylori infections in adult patients with dyspeptic symptoms. Risk of bias was assessed using the QUADAS (Quality Assessment of Diagnostic Accuracy Studies)-2 tool.

View Article and Find Full Text PDF