Methylmercury (MeHg) is a global environmental pollutant with neurotoxicity, which can easily crosses the blood-brain barrier and cause irreversible damage to the human central nervous system (CNS). CNS inflammation and autophagy are known to be involved in the pathology of neurodegenerative diseases. Meanwhile, MeHg has the potential to induce microglia-mediated neuroinflammation as well as autophagy.
View Article and Find Full Text PDFEcotoxicol Environ Saf
March 2024
Silica nanoparticles (SiNPs) are widely used in the biomedical field and can enter the central nervous system through the blood-brain barrier, causing damage to hippocampal neurons. However, the specific mechanism remains unclear. In this experiment, HT22 cells were selected as the experimental model in vitro, and the survival rate of cells under the action of SiNPs was detected by MTT method, reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and adenosine triphosphate (ATP) were tested by the kit, the ultrastructure of the cells was observed by transmission electron microscope, membrane potential (MMP), calcium ion (Ca) and apoptosis rate were measured by flow cytometry, and the expressions of mitochondrial functional protein, mitochondrial dynein, mitochondrial autophagy protein as well as apoptosis related protein were detected by Western blot.
View Article and Find Full Text PDFSilica nanoparticles (SiNPs) have been widely used in industry, electronics, and pharmaceutical industries. In addition, it is also widely used in medicine, tumor treatment and diagnosis, as well as other biomedical and biotechnology fields. The opportunities for people to contact SiNPs through iatrogenic, occupational, and environmental exposures are gradually increasing.
View Article and Find Full Text PDFThe study aimed to explore the role and mechanism of unfolded protein response (UPR) in methylmercury (MeHg)-induced Mouse Spermatocytes (GC-2spd[ts]) apoptosis. Methods such as MTT, flow cytometry, and Western Blot were used to evaluate the cell viability, membrane potential (MMP), reactive oxygen species (ROS), calcium ion (Ca ), rate of cell apoptosis, and the expression of apoptosis-related and UPR-related protein. The results showed that with the increase of MeHg concentration, cell viability and MMP decreased, ROS, Ca , rate of cell apoptosis, and the expression of apoptosis-related protein and UPR-related protein increased.
View Article and Find Full Text PDF