The large open circuit voltage (V) loss is currently one of the main obstacles to achieving efficient organic solar cells (OSCs). In this study, the ternary OSCs comprising PM6:BTP-eC9:IT-4F demonstrate a superior efficiency of 18.2 %.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2024
Low bandgap organic semiconductors have been widely employed to broaden the light response range to utilize much more photons in the inverted perovskite solar cells (PSCs). However, the serious charge recombination at the heterointerface contact between perovskite and organic semiconductors usually leads to large energy loss and limits the device performance. In this work, a titanium chelate, bis(2,4-pentanedionato) titanium(IV) oxide (CHOTi), was directly used as an interlayer between the perovskite layer and organic bulk heterojunction layer for the first time.
View Article and Find Full Text PDFIn this study, using PM6:L8-BO as the main system and non-fullerene acceptor IDIC as the third component, a series of ternary organic solar cells (TOSCs) are fabricated. The results reveal that IDIC plays a significant role in enhancing the performance of TOSCs by optimizing the morphology of blended films and forming interpenetrating nanostructure. The improved film morphology facilitates exciton dissociation and collection in TOSCs, which causes an increase in the short-circuit current density (J ) and fill factor (FF).
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
Additive strategies play a critical role in improving the performance of organic solar cells (OSCs). There are only a few reports on the application of solid additives for OSCs, which leaves a large space for further improvement of solid additives and further study on the relationship between material structure and property. PM6:BTP-eC9-based organic solar cells (OSCs) were prepared by using a small molecule BTA3 as a solid additive, and a high energy conversion efficiency of 18.
View Article and Find Full Text PDFPoly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) represents the state-of-the-art hole transport material (HTM) in inverted perovskite solar cells (PSCs). However, unsatisfied surface properties of PTAA and high energy disorder in the bulk film hinder the further enhancement of device performance. Herein, a simple small molecule 10-(4-(3,6-dimethoxy-9H-carbazol-9-yl)phenyl)-3,7-bis(4-vinylphenyl)-10H-phenoxazine (MCz-VPOZ) is strategically developed for in situ fabrication of polymer hole conductor (CL-MCz) via a facile and low-temperature cross-linking technology.
View Article and Find Full Text PDFSolution-processed hole contact materials, as an indispensable component in perovskite solar cells (PSCs), have been widely studied with consistent progress achieved. One bottleneck for the commercialization of PSCs is the lack of hole contact materials with high performance, cost-effective preparation, and green-solvent processability. Therefore, the development of versatile hole contact materials is of great significance.
View Article and Find Full Text PDFCharge carrier nonradiative recombination (NRR) caused by interface defects and nonoptimal energy level alignment is the primary factor restricting the performance improvement of perovskite solar cells (PSCs). Interfacial modification is a vital strategy to restrain NRR and enable high-performance PSCs. We report here two interfacial materials, PhI-TPA and BTZI-TPA, consisting of phthalimide and a 2,1,3-benzothiadiazole-5,6-dicarboxylicimide core, respectively.
View Article and Find Full Text PDFIntramolecular noncovalent interactions (INIs) have served as a powerful strategy for accessing organic semiconductors with enhanced charge transport properties. Herein, we apply the INI strategy for developing dopant-free hole-transporting materials (HTMs) by constructing two small-molecular HTMs featuring an INI-integrated backbone for high-performance perovskite solar cells (PVSCs). Upon incorporating noncovalent S⋅⋅⋅O interaction into their simple-structured backbones, the resulting HTMs, BTORA and BTORCNA, showed self-planarized backbones, tuned energy levels, enhanced thermal properties, appropriate film morphology, and effective defect passivation.
View Article and Find Full Text PDFConductive polyelectrolytes such as P3CT-Na have been widely used as efficient hole-transporting layers (HTLs) in inverted perovskite solar cells (PSCs) due to their high hole mobility. However, the acid-base neutralization reaction is indispensable for preparing such polyelectrolytes and the varied content of cations usually leads to poor reproducibility of the device performance in PSCs. In this work, a commercially available polymer poly[3-(4-carboxybutyl)thiophene-2,5-diyl] (P3CT) was directly applied as an HTL in PSCs for the first time.
View Article and Find Full Text PDFAs a key component in perovskite solar cells (PVSCs), hole-transporting materials (HTMs) have been extensively explored and studied. Aiming to meet the requirements for future commercialization of PVSCs, HTMs which can enable excellent device performance with low cost and eco-friendly processability are urgently needed but rarely reported. In this work, a traditional anchoring group (2-cyanoacrylic acid) widely used in molecules for dye-sensitized solar cells is incorporated into donor-acceptor-type HTMs to afford MPA-BT-CA, which enables effective regulation of the frontier molecular orbital energy levels, interfacial modification of an ITO electrode, efficient defect passivation toward the perovskite layer, and more importantly alcohol solubility.
View Article and Find Full Text PDFA new polymer acceptor poly{(N,N'-bis(2-ethylhexyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl)-alt-5,5-(3,3'-didodecyl-2,2'-bifuran)} (NDI-BFR) made from naphthalenediimide (NDI) and furan-derived head-to-head-linked 3,3'-dialkyl-2,2'-bifuran (BFR) units is reported in this study. Compared to the benchmark polymer poly(naphthalenediimide-alt-bithiophene) (N2200), NDI-BFR exhibits a larger bathochromic shift of absorption maxima (842 nm) with a much higher absorption coefficient (7.2 × 10 m cm ), leading to an ultranarrow optical bandgap of 1.
View Article and Find Full Text PDFSignificant progress has been made in nonfullerene small molecule acceptors (NF-SMAs) that leads to a consistent increase of power conversion efficiency (PCE) of nonfullerene organic solar cells (NF-OSCs). To achieve better compatibility with high-performance NF-SMAs, the direction of molecular design for donor polymers is toward wide bandgap (WBG), tailored properties, and preferentially ecofriendly processability for device fabrication. Here, a weak acceptor unit, methyl 2,5-dibromo-4-fluorothiophene-3-carboxylate (FE-T), is synthesized and copolymerized with benzo[1,2-b:4,5-b']dithiophene (BDT) to afford a series of nonhalogenated solvent processable WBG polymers P1-P3 with a distinct side chain on FE-T.
View Article and Find Full Text PDFAn isomerization method was utilized to yield a novel near-infrared nonfullerene acceptor DTA-IC-M. By simply changing the linking fashion between the anthracene and neighboring thiophenes, a remarkable redshift (∼170 nm) of absorption was observed from DTA-IC-S to its isomer DTA-IC-M which shows a maximum absorption peak over 800 nm with a narrow bandgap of 1.35 eV.
View Article and Find Full Text PDFCurrently, n-type acceptors in high-performance all-polymer solar cells (all-PSCs) are dominated by imide-functionalized polymers, which typically show medium bandgap. Herein, a novel narrow-bandgap polymer, poly(5,6-dicyano-2,1,3-benzothiadiazole-alt-indacenodithiophene) (DCNBT-IDT), based on dicyanobenzothiadiazole without an imide group is reported. The strong electron-withdrawing cyano functionality enables DCNBT-IDT with n-type character and, more importantly, alleviates the steric hindrance associated with typical imide groups.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2019
Halogenated solvents are prevailingly used in the fabrication of nonfullerene organic solar cells (NF-OSCs) at the current stage, imposing significant restraints on their practical applications. By copolymerizing phthalimide or thieno[3,4-]pyrrole-4,6-dione (TPD) with 1,4-di(3-alkoxy-2-thienyl)-2,5-difluorophenylene (DOTFP), which features intramolecular noncovalent interactions, the backbone planarity of the resulting DOTFP-based polymers can be effectively tuned, yielding distinct solubilities, aggregation characters, and chain packing properties. Polymer DOTFP-PhI with a more twisted backbone showed a lower degree of aggregation in solution but an increased film crystallinity than polymer DOTFP-TPD.
View Article and Find Full Text PDFHighly efficient nonfullerene polymer solar cells (PSCs) are developed based on two new phthalimide-based polymers phthalimide-difluorobenzothiadiazole (PhI-ffBT) and fluorinated phthalimide-ffBT (ffPhI-ffBT). Compared to all high-performance polymers reported, which are exclusively based on benzo[1,2-:4,5-']dithiophene (BDT), both PhI-ffBT and ffPhI-ffBT are BDT-free and feature a D-A-D-A type backbone. Incorporating a second acceptor unit difluorobenzothiadiazole leads to polymers with low-lying highest occupied molecular orbital levels (≈-5.
View Article and Find Full Text PDFThis study shows that the backbone conformation of head-to-head type 3,3'-dialkyl-2,2'-bithiophene can be tuned via fluorination of the neighboring benzothiadiazole (BTz). Without fluorination, the polymer backbone is highly twisted, whereas difluorination of BTz produced a coplanar backbone. Monofluorination of BTz yielded a tunable polymer backbone conformation depending on the film annealing temperature.
View Article and Find Full Text PDFNarrow bandgap (1.37-1.46 eV) polymers incorporating a head-to-head linkage containing 3-alkoxy-3'-alkyl-2,2'-bithiophene are synthesized.
View Article and Find Full Text PDF