Publications by authors named "Qiaofeng Xu"

The single-shot compressed ultrafast photography (CUP) camera is the fastest receive-only camera in the world. In this Letter, we introduce an external CCD camera and a space- and intensity-constrained (SIC) reconstruction algorithm to improve the image quality of CUP. The external CCD camera takes a time-unsheared image of the dynamic scene.

View Article and Find Full Text PDF

Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT.

View Article and Find Full Text PDF

Propagation-based x-ray phase-contrast (PB XPC) tomosynthesis combines the concepts of tomosynthesis and XPC imaging to realize the advantages of both for biological imaging applications. Tomosynthesis permits reductions in acquisition times compared with full-view tomography, while XPC imaging provides the opportunity to resolve weakly absorbing structures. In this note, an investigation of the depth resolving properties of PB XPC tomosynthesis is conducted.

View Article and Find Full Text PDF

The development of spectral X-ray computed tomography (CT) using binned photon-counting detectors has received great attention in recent years and has enabled selective imaging of contrast agents loaded with K-edge materials. A practical issue in implementing this technique is the mitigation of the high-noise levels often present in material-decomposed sinogram data. In this work, the spectral X-ray CT reconstruction problem is formulated within a multi-channel (MC) framework in which statistical correlations between the decomposed material sinograms can be exploited to improve image quality.

View Article and Find Full Text PDF

The development of spectral computed tomography (CT) using binned photon-counting detectors has garnered great interest in recent years and has enabled selective imaging of K-edge materials. A practical challenge in CT image reconstruction of K-edge materials is the mitigation of image artifacts that arise from reduced-view and/or noisy decomposed sinogram data. In this note, we describe and investigate sparsity-regularized penalized weighted least squares-based image reconstruction algorithms for reconstructing K-edge images from few-view decomposed K-edge sinogram data.

View Article and Find Full Text PDF

The in vitro investigation of many optically opaque biological microstructures requires 3D analysis at high resolution over a large field of view. We demonstrate a new nondestructive volumetric imaging technique that eliminates the structural and computational limitations of conventional 2D optical microscopy by combining x-ray phase-contrast tomography with critical point drying sample preparation. We experimentally demonstrate the enhancement of small features afforded by phase-contrast imaging and show the contrast improvement afforded by the drying of a hydrated specimen.

View Article and Find Full Text PDF

Differential X-ray phase-contrast tomography (DPCT) refers to a class of promising methods for reconstructing the X-ray refractive index distribution of materials that present weak X-ray absorption contrast. The tomographic projection data in DPCT, from which an estimate of the refractive index distribution is reconstructed, correspond to one-dimensional (1D) derivatives of the two-dimensional (2D) Radon transform of the refractive index distribution. There is an important need for the development of iterative image reconstruction methods for DPCT that can yield useful images from few-view projection data, thereby mitigating the long data-acquisition times and large radiation doses associated with use of analytic reconstruction methods.

View Article and Find Full Text PDF

Despite the extensive use of polycapillary x-ray optics for focusing and collimating applications, there remains a significant need for characterization of the coherence properties of the output wavefield. In this work, we present the first quantitative computational method for calculation of the spatial coherence effects of polycapillary x-ray optical devices. This method employs the coherent mode decomposition of an extended x-ray source, geometric optical propagation of individual wavefield modes through a polycapillary device, output wavefield calculation by ray data resampling onto a uniform grid, and the calculation of spatial coherence properties by way of the spectral degree of coherence.

View Article and Find Full Text PDF

A reconstruction theory for multispectral intensity diffraction tomography (I-DT) is established and investigated for use with single material objects whose dispersion characteristics are known a priori. Instead of varying the object-to-detector distance, as prescribed by the original I-DT method and other classic in-line holographic reconstruction methods, the temporal frequency of the illuminating plane wave represents the degree of freedom of the imaging system that is varied to acquire two independent intensity measurements at each tomographic view angle. Unlike previous multispectral I-DT methods, the proposed method does not require a nondispersive assumption.

View Article and Find Full Text PDF