Publications by authors named "QiaoYan Tan"

Background: Two-dimensional ultrathin TiC (MXene) nanosheets have gained significant attention in various biomedical applications. Although previous studies have described the accumulation and associated damage of TiC nanosheets in the testes and placenta. However, it is currently unclear whether TiC nanosheets can be translocated to the ovaries and cause ovarian damage, thereby impairing ovarian functions.

View Article and Find Full Text PDF

Physical therapy is extensively employed in clinical settings. Nevertheless, the absence of suitable animal models has resulted in an incomplete understanding of the in vivo mechanisms and cellular distribution that respond to physical stimuli. The objective of this research was to create a mouse model capable of indicating the cells affected by physical stimuli.

View Article and Find Full Text PDF

Macrophages are heterogenic phagocytic cells that play distinct roles in physiological and pathological processes. Targeting different types of macrophages has shown potent therapeutic effects in many diseases. Although many approaches are developed to target anti-inflammatory macrophages, there are few researches on targeting pro-inflammatory macrophages, which is partially attributed to their non-s pecificity phagocytosis of extracellular substances.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a full-joint, multifactorial, degenerative and inflammatory disease that seriously affects the quality of life of patients due to its disabling and pain-causing properties. ER stress has been reported to be closely related to the progression of OA. The inositol-requiring enzyme 1α/X-box-binding protein-1 spliced (IRE1α/XBP1s) pathway, which is highly expressed in the chondrocytes of OA patients, promotes the degradation and refolding of abnormal proteins during ER stress and maintains the stability of the ER environment of chondrocytes, but its function and the underlying mechanisms of how it contributes to the progression of OA remain unclear.

View Article and Find Full Text PDF

Cartilage development is controlled by the highly synergistic proliferation and differentiation of growth plate chondrocytes, in which the Indian hedgehog (IHH) and parathyroid hormone-related protein-parathyroid hormone-1 receptor (PTHrP-PTH1R) feedback loop is crucial. The inositol-requiring enzyme 1α/X-box-binding protein-1 spliced (IRE1α/XBP1s) branch of the unfolded protein response (UPR) is essential for normal cartilage development. However, the precise role of ER stress effector IRE1α, encoded by endoplasmic reticulum to nucleus signaling 1 (), in skeletal development remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Intervertebral disc degeneration (IVDD) leads to low back pain and is marked by a loss of nucleus pulposus (NP) cells, but there's limited understanding of NP cell proliferation in growth and regeneration.
  • Researchers used genetically modified mice to study the behavior of FGFR3-positive NP cells and their role in postnatal growth.
  • The study found that FGFR3 NP cells not only proliferate during growth but also play a crucial role in maintaining the structure and repair of the adult NP, potentially aiding in future treatments for IVDD.
View Article and Find Full Text PDF

The intervertebral disc (IVD) is the largest avascular tissue. Hypoxia-inducible factors (HIFs) play essential roles in regulating cellular adaptation in the IVD under physiological conditions. Disc degeneration disease (DDD) is one of the leading causes of disability, and current therapies are ineffective.

View Article and Find Full Text PDF

X-box binding protein 1(XBP1) is a critical component for unfolded protein response (UPR) in ER stress. According to previous studies performed with different XBP1-deficient mice, the gene affects mouse cartilage development and causes other related diseases. However, how the complete transcriptome, including mRNA and ncRNAs, affects the function of cartilage and other tissues when is deficient in chondrocytes is unclear.

View Article and Find Full Text PDF

Systemic application of glucocorticoids is an essential anti-inflammatory and immune-modulating therapy for severe inflammatory or autoimmunity conditions. However, its long-term effects on articular cartilage of patients' health need to be further investigated. In this study, we studied the effects of dexamethasone (Dex) on the homeostasis of articular cartilage and the progress of destabilization of medial meniscus (DMM)-induced osteoarthritis (OA) in adult mice.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used a mouse model of OA and isolated fibroblast-like synoviocytes from human patients to evaluate the impact of LIPUS on synovial fibrosis, cellular proliferation, and specific signaling pathways.
  • * Findings indicate that LIPUS treatment significantly reduces synovial fibrosis and related cellular activities in mice and human cells, suggesting its potential as a therapeutic approach for managing OA-related synovial fibrosis by inhibiting the Wnt/β-catenin signaling pathway.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists are working on new treatment options for autoimmune inflammatory diseases using special RNA drugs called siRNA.
  • Researchers created a system to deliver these siRNA drugs directly to certain immune cells called macrophages, using materials that help them work better.
  • The new treatment showed positive results in mouse models for diseases like arthritis and inflammatory bowel disease, suggesting it could help people with similar conditions in the future.
View Article and Find Full Text PDF

Acquired heterotopic ossification (HO) is the extraskeletal bone formation after trauma. Various mesenchymal progenitors are reported to participate in ectopic bone formation. Here we induce acquired HO in mice by Achilles tenotomy and observe that conditional knockout (cKO) of fibroblast growth factor receptor 3 (FGFR3) in Col2 cells promote acquired HO development.

View Article and Find Full Text PDF

Osteoarthritis (OA) is the most common joint disease. The surface of joint cartilage is a defensive and first affected structure of articular cartilage (AC) during the pathogenesis of OA. Alk5 signaling is critical for maintaining AC homeostasis, however, the role and underlying mechanism for the involvement of Alk5 signaling in the phenotypes of articular cartilage stem cells (ACSCs) at the surface of AC is still unclear.

View Article and Find Full Text PDF

Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.

View Article and Find Full Text PDF

CATSHL syndrome, characterized by camptodactyly, tall stature and hearing loss, is caused by loss-of-function mutations of fibroblast growth factor receptors 3 (FGFR3) gene. Most manifestations of patients with CATSHL syndrome start to develop in the embryonic stage, such as skeletal overgrowth, craniofacial abnormalities, however, the pathogenesis of these phenotypes especially the early maldevelopment remains incompletely understood. Furthermore, there are no effective therapeutic targets for this skeleton dysplasia.

View Article and Find Full Text PDF

Synovitis plays an important role in the pathogenesis of arthritis, which is closely related to the joint swell and pain of patients. The purpose of this study was to investigate the anti-inflammatory effects of pulsed electromagnetic fields (PEMF) on synovitis and its underlying mechanisms. Destabilization of the medial meniscus (DMM) model and air pouch inflammation model were established to induce synovitis in C57BL/6 mice.

View Article and Find Full Text PDF
Article Synopsis
  • * The study explored how LIPUS impacts chondrocyte-derived vascular endothelium growth factor A (VEGFA), which is linked to cartilage degeneration in OA patients, and found that LIPUS reduces VEGFA levels in mouse cartilage and chondrocytes.
  • * The beneficial effects of LIPUS were found to be associated with the inhibition of p38 MAPK, highlighting a potential mechanism for its action in regulating VEGFA expression and improving cartilage health in OA.
View Article and Find Full Text PDF

Objectives: This study aims to investigate the role and mechanism of FGFR3 in macrophages and their biological effects on the pathology of arthritis.

Methods: Mice with conditional knockout of FGFR3 in myeloid cells (R3cKO) were generated. Gait behaviours of the mice were monitored at different ages.

View Article and Find Full Text PDF

Unlabelled: Synovitis is implicated in the pathology of osteoarthritis (OA) and significantly contributes to the development of OA. As a noninvasive physical therapy, low-intensity pulsed ultrasound (LIPUS) has been reported to possess anti-inflammatory effect in recent years. However, the role of LIPUS on synovitis of OA and the underlying mechanisms are little known.

View Article and Find Full Text PDF

Synovitis, a common clinical symptom for osteoarthritis (OA) patients, is highly related to OA pathological progression and pain manifestation. The activated synovial macrophages have been demonstrated to play an important role in synovitis, but the mechanisms about macrophage activation are still not clear. In this study, we found that the exosome-like vesicles from osteoarthritic chondrocytes could be a new biological factor to stimulate inflammasome activation and increase mature IL-1β production in macrophages.

View Article and Find Full Text PDF

Cartilage-hair hypoplasia (CHH) is an autosomal recessive metaphyseal chondrodysplasia characterized by bone dysplasia and many other highly variable features. The gene responsible for CHH is the RNA component of the mitochondrial RNA-processing endoribonuclease (RMRP) gene. Currently, the pathogenesis of osteochondrodysplasia and extraskeletal manifestations in CHH patients remains incompletely understood; in addition, there are no viable animal models for CHH.

View Article and Find Full Text PDF

Objective: Scoliosis is a common disease characterized by spinal curvature with variable severities. There is no generally accepted theory about the physical origin of the spinal deformation of scoliosis. The aim of this study was to explore a new hypothesis suggesting that the curvatures in scoliosis may be associated with the imbalance growth between thoracic vertebral column and sternum.

View Article and Find Full Text PDF

Apert syndrome (AS), the most severe form of craniosynostosis, is caused by missense mutations including Pro253Arg(P253R) of fibroblast growth factor receptor 2 (FGFR2), which leads to enhanced FGF/FGFR2-signaling activity. Surgical correction of the deformed skull is the typical treatment for AS. Because of constant maldevelopment of sutures, the corrective surgery is often executed several times, resulting in increased patient challenge and complications.

View Article and Find Full Text PDF

It has been reported that overactivation of fibroblast growth factor receptor 1 (FGFR1 is an important characteristic found in most non-small cell lung cancer (NSCLC) samples. Here, we identified a FGFR1 inhibitory peptide R1-P2 and investigated its effects on the lung cancer cells growth and angiogenesis and . Our results demonstrate that R1-P2 bound to human FGFR1 protein, and efficiently blocked the binding of FGF2 to FGFR1 in A549 and NCI-H460 cells.

View Article and Find Full Text PDF

Activation of transforming growth factor-β (TGF-β) signaling has been used to enhance healing of meniscal degeneration in several models. However, the exact role and molecular mechanism of TGF-β signaling in meniscus maintenance and degeneration are still not understood due to the absence of in vivo evidence. In this study, we found that the expression of activin receptor-like kinases 5 (ALK5) in the meniscus was decreased with the progression of age and/or osteoarthritis induced meniscal degeneration.

View Article and Find Full Text PDF