Publications by authors named "Qiao-Yun Sun"

Medicinal plants have been studied for potential endophytic interactions and numerous studies have provided evidence that seeds harbor diverse microbial communities, not only on their surfaces but also within the embryo. Adenosine deaminase (ADA) is known as a potential therapeutic target for the treatment of lymphoproliferative disorders and cancer. Therefore, in this study, 20 types of medicinal plant seeds were used to screen endophytic fungi with tissue homogenate and streak.

View Article and Find Full Text PDF

Background: Adenosine deaminase (ADA) is an important enzyme in purine metabolism and is known as a potential therapeutic target for the treatment of lymphoproliferative disorders and cancer. Traditional Chinese Herbal Medicine (TCHM) is widely used alone or in combination with chemotherapy to treat cancer, due to its ability to deliver a broad variety of bioactive secondary metabolites as promising sources of novel organic natural agents.

Objective: In the present study, 29 varieties of medicinal plants were screened for the presence of ADA inhibitors.

View Article and Find Full Text PDF

Adenosine deaminase (ADA) is an enzyme widely distributed from bacteria to humans. ADA is known as a potential therapeutic target for the treatment of lymphoproliferative disorders and cancer. Endophytes are endosymbionts, often bacteria or fungi, which live within plant tissues and internal organs or intercellular space.

View Article and Find Full Text PDF

The actinomycetes strain, lut0910, was isolated from polluted soil and identified as the Rhodococcus species with 99% similarity based on the sequence analysis of 16S recombinant DNA. The extract of this strain demonstrated in vivo and in vitro antitumor activity. The treatment of two human cancer cell lines, hepatocellular carcinoma HepG2 and cervical carcinoma Hela cells, with the lut0910 extract caused the delay in cell propagation in a dose-dependent manner with an IC of 73.

View Article and Find Full Text PDF