Aqueous Zn-ion batteries are plagued by a short lifespan caused by localized dendrites. High-concentration electrolytes are favorable for dense Zn deposition but have poor performance in batteries with glass-fiber separators. In contrast, low-concentration electrolytes can wet the separators well, ensuring the migration of zinc ions, but the dendrites grow rapidly.
View Article and Find Full Text PDFRecycling lithium from spent batteries is challenging because of problems with poor purity and contamination. Here, we propose a green and sustainable lithium recovery strategy for spent batteries containing LiFePO, LiCoO, and LiNiCoMnO electrodes. Our proposed configuration of "lithium-rich electrode || LLZTO@LiTFSI+P3HT || LiOH" system achieves double-side and roll-to-roll recycling of lithium-containing electrode without destroying its integrity.
View Article and Find Full Text PDFThe strong activity of water molecules causes a series of parasitic side reactions on Zn anodes in the aqueous electrolytes. Herein, we introduce silk fibroin (SF) as a multifunctional electrolyte additive for aqueous zinc-ion (Zn-ion) batteries. The secondary structure transformation of SF molecules from α-helices to random coils in the aqueous electrolytes allows them to break the hydrogen bond network among free water molecules and participate in Zn ion solvation structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
Ammonia (NH) is one of the most frequently produced chemical products in the world, and it plays an indispensable role in life on Earth. However, its synthesis by the Haber-Bosch (H-B) process is highly energy intensive, resulting in extensive carbon emissions that are unsustainable due to their ability to harm the environment. Herein, we propose a facile and mass-producible strategy for increasing the rate and efficiency of nitrogen fixation through the use of copper particle-catalyzed Li nitridation and a solid electrolyte as a medium to reduce Li salt; the above strategy results in the conversion of water and nitrogen into NH through the use of renewable electrical energy at room temperature and atmospheric pressure.
View Article and Find Full Text PDFMetallic zinc anodes in zinc-ion batteries suffer from problematic Zn dendrite chemistry. Previous works have shown that preferred-orientation crystal planes can help dendrite-free metal anodes. This work reports a nanothickness (≈570 nm) AgZn coating to regulate the Zn growth.
View Article and Find Full Text PDFThe propensity of sodium anode to form uniform electrodeposit is bound up with the nature of electrode surface and regulation of Na-ion flux, as well as distribution of electronic field, which is quite crucial for high-areal-capacity sodium metal batteries (SMBs). Herein, a novel metallic sodium/sodium-tin alloy foil anode (Na/NaSn) with 3D interpenetrated network and porous structure is prepared through facile alloy reaction. The strong sodiophilic properties of sodium-tin alloy can lower the nucleation energy, resulting in smaller depositing potential and strong adsorption of Na , while synergistic effect of porous skeleton and additional potential difference (≈0.
View Article and Find Full Text PDFTo explore the effect of inorganic minerals on activation process and lead adsorption of sludge-based biochar, sludge-based biochar was pre-deashed using hydrochloric acid or hydrofluoric acid followed by potassium acetate activation. The results indicate that hydrochloric or hydrofluoric acid deashing can improve the pore parameters of sludge-based biochars and promote subsequent activation effect of potassium acetate. The specific surface area of biochar activated by potassium acetate after hydrochloric acid and hydrofluoric acid pretreatment increased from 583.
View Article and Find Full Text PDF