Neutralizing antibodies and fusion inhibitory peptides have the potential required to combat the global pandemic caused by SARS-CoV-2 and its variants. However, the lack of oral bioavailability and enzymatic susceptibility limited their application, necessitating the development of novel pan-CoV fusion inhibitors. Herein we report a series of helical peptidomimetics, d-sulfonyl-γ-AApeptides, which effectively mimic the key residues of heptad repeat 2 and interact with heptad repeat 1 in the SARS-CoV-2 S2 subunit, resulting in inhibiting SARS-CoV-2 spike protein-mediated fusion between virus and cell membranes.
View Article and Find Full Text PDFAim: Ferroptosis, a novel type of iron-dependent cell death, plays a vital role in breast cancer progression. However, the function of ferroptosis-induced cancer cell-derived exosomes in breast cancer remains unclear. In this study, we attempted to investigate the impact of breast cancer cells-derived exosomes induced by ferroptosis on the polarization of macrophages and the progression of breast cancer.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic caused by infection of SARS-CoV-2 and its variants has posed serious threats to global public health, thus calling for the development of potent and broad-spectrum antivirals. We previously designed and developed a peptide-based pan-coronavirus (CoV) fusion inhibitor, EK1, which is effective against all human CoVs (HCoV) tested by targeting the HCoV S protein HR1 domain. However, its relatively short half-life may limit its clinical use.
View Article and Find Full Text PDFPharmaceuticals (Basel)
March 2022
Recently, a series of highly effective peptide- or protein-based HIV fusion inhibitors have been identified. However, due to their short half-life, their clinical application is limited. Therefore, the development of long-acting HIV fusion inhibitors is urgently needed.
View Article and Find Full Text PDF