Methanol steam reforming (MSR) is studied on a PtSn surface using the density functional theory (DFT). An MSR network is mapped out, including several reaction pathways. The main pathway proposed is CHOH + OH → CHO → CHO → CHO + OH → CHOOH → CHOOH → COOH → COOH + OH → CO + HO.
View Article and Find Full Text PDFA series of meso-microporous Cu-SAPO-34 catalysts were successfully synthesized by a one-pot hydrothermal crystallization method, and these catalysts exhibited excellent NH-SCR performance at low temperature. Their structure and physic chemical properties were characterized by means of X-ray diffraction patterns (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), N sorption-desorption, nuclear magnetic resonance (NMR), Inductively Coupled Plasma-Atomic Emission spectrometer (ICP-AES), X-ray absorption spectroscopy (XPS), Temperature-programmed desorption of ammonia (NH-TPD), Ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS) and Temperature programmed reduction (TPR). The analysis results indicate that the high activities of Cu-SAPO-34 catalysts could be attributed to the enhancement of redox property, the formation of mesopores and the more acid sites.
View Article and Find Full Text PDFZeolite fibers have attracted growing interest for a range of new applications because of their structural particularity while maintaining the intrinsic performances of the building blocks of zeolites. The fabrication of uniform zeolite fibers with tunable hierarchical porosity and further exploration of their catalytic potential are of great importance. Here, we present a versatile and facile method for the fabrication of hierarchical ZSM-5 zeolite fibers with macro-meso-microporosity by coaxial electrospinning.
View Article and Find Full Text PDFThe role of external ionic strength in diatom biosilica formation was assessed by monitoring the nanostructural changes in the biosilica of the two marine diatom species Thalassiosira punctigera and Thalassiosira weissflogii that was obtained from cultures grown at two distinct salinities. Using physicochemical methods, we found that at lower salinity the specific surface area, the fractal dimensions, and the size of mesopores present in the biosilica decreased. Diatom biosilica appears to be denser at the lower salinity that was applied.
View Article and Find Full Text PDFHerein we report the synthesis and characterization of hollow silica spheres with a narrow size distribution, uniform wall thickness, and a worm-like pore structure. The formation of these spheres was monitored by confocal laser scanning microscopy and dynamic light scattering. A model for the molecular build-up of these silica hollow spheres is derived from these data in combination with studies of the as-made particles by transmission electron microscopy, scanning electron microscopy, pore size analysis, thermogravimetric analysis, and solid-state nuclear magnetic resonance.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
January 2005
Silica becomes increasingly used in chemical, pharmaceutical, and (nano)technological processes, resulting in an increased demand for well-defined silicas and silica-based materials. The production of highly structured silica from cheap starting materials and under ambient conditions, which is a target for many researchers, is already realized in the formation of diatom biosilica, producing highly hierarchical ordered meso- and macropores silica structures. This notion formed the starting point in our integrative biomolecular and biomimetic study on diatom silicon biomineralization in which we have analyzed silica transformations and structure-direction in polymer-mediated silica syntheses using a combination of (ultra)small-angle X-ray scattering and (cryo)electron microscopy.
View Article and Find Full Text PDF