Herein, we optimize the primary solvation sheath to investigate the fundamental correlation between battery performance and electrode-electrolyte interfacial properties through electrolyte solvation chemistry. Experimental and theoretical analyses reveal that the primary solvation sheath with a self-purifying feature can "positively" scavenge both the HF and PF (hydrolysis of ion-paired LiPF), stabilize the PF anion-derived electrode-electrolyte interfaces, and thus boost the cycling performances. Being attributed with these superiorities, the NCM811//Li Li metal battery (LMB) with the electrolyte containing the optimized solvation sheath delivers 99.
View Article and Find Full Text PDFSodium-ion batteries (SIBs) are expected to replace partial reliance on lithium-ion batteries (LIBs) in the field of large-scale energy storage as well as low-speed electric vehicles due to the abundance, wide distribution, and easy availability of sodium metal. Unfortunately, a certain amount of sodium ions are irreversibly trapped in the solid electrolyte interface (SEI) layer during the initial charging process, causing the initial capacity loss (ICL) of the SIBs. A separator capacity-compensation strategy is proposed, where the capacity compensator on the separator oxidizes below the high cut-off voltage of the cathode to provide additional sodium ions.
View Article and Find Full Text PDFBy virtue of high theoretical capacity and appropriate lithiation potential, phosphorus is considered as a prospective next-generation anode material for lithium-ion batteries. However, there are some problems hampering its practical application, such as low ionic conductivity and serious volume expansion. Herein, we demonstrated an in situ preoxidation strategy to build a oxidation function layer at phosphorus particle.
View Article and Find Full Text PDF