Developing novel fluoroether electrolytes with high-voltage stability is an effective strategy to improve the performance of lithium metal batteries (LMB). However, the vast chemical space of fluoroether is underexplored due to the absence of effective tools to evaluate the potential used in high-voltage LMB. Herein, a framework was developed in combination of Voting ensemble algorithms and graph convolution neural network (GCNN), allowing the fast assessment of oxidative stability of non-aqueous liquid electrolytes, synthesizability of solvents as well as the solvation ability of them to dissolve lithium salts.
View Article and Find Full Text PDFWater pollution resulting from Hg(II) ions has garnered significant global concern for public health. The flexibility and simplicity of design, cost savings, and ease of operation with adaptive designs provide adsorption with a considerable advantage over other processes. However, MoS is hydrophobic in nature, which limits its efficiency in the removal of Hg(II) ions from water.
View Article and Find Full Text PDFLiMnO spinel is emerging as a promising cathode material for lithium-ion batteries, largely due to its open framework that facilitates Li diffusion and excellent rate performance. However, the charge-discharge cycling of the LiMnO cathode leads to severe structural degradation and rapid capacity decay. Here, an electrochemical activation strategy is introduced, employing a facile galvano-potentiostatic charging operation, to restore the lost capacity of LiMnO cathode without damaging the battery configuration.
View Article and Find Full Text PDFPrecise manipulation of the coordination configuration within substances can modulate the band structure and catalytic properties of the target material. Metal-covalent organic frameworks (MCOFs), a crystal material amalgamating the benefits of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), can integrate a predetermined coordination environment into the frameworks for amplifying the catalytic effect. In this study, we delicately synthesize isomeric MCOFs using bis(glycinato)copper as the aminoligand via kinetically and thermodynamically favorable pathways to yield cis-MCOF and trans-MCOF products, respectively, thereby introducing a cis-trans isomeric coordination field into the framework.
View Article and Find Full Text PDF