Publications by authors named "Qiantao Zheng"

Article Synopsis
  • The study explored the relationship between gut microbiota and fat deposition in UCP1 knock-in pigs, which have lower fat levels compared to wild-type pigs.
  • Results showed significant changes in fecal microbiota composition and metabolites, particularly an increase in specific bacteria and the metabolite hyodeoxycholic acid (HDCA), which correlate with reduced backfat thickness.
  • Fecal microbiota transplantation from UCP1 pigs to mice demonstrated that these microbes influence lipid metabolism, suggesting potential applications for regulating fat deposition through gut microbiota manipulation.
View Article and Find Full Text PDF

Leptin exerts its biological actions by activating the long-form leptin receptor (LepRb). LepRb signaling impairment and leptin resistance are believed to cause obesity. The transcription factor Slug - also known as Snai2 - recruits epigenetic modifiers and regulates gene expression by an epigenetic mechanism; however, its epigenetic action has not been explored in leptin resistance.

View Article and Find Full Text PDF

The precise and simultaneous acquisition of multiple beneficial alleles in the genome is in great demand for the development of elite pig breeders. Cytidine base editors (CBEs) that convert C:G to T:A have emerged as powerful tools for single-nucleotide replacement. Whether CBEs can effectively mediate C-to-T substitution at multiple sites/loci for trait improvement by direct zygote injection has not been verified in large animals.

View Article and Find Full Text PDF

Mitochondrial uncoupling protein 1 (UCP1) is the hallmark of brown adipocytes responsible for cold- and diet-induced thermogenesis. Here, we report a previously unidentified role of UCP1 in maintaining vascular health through its anti-inflammatory actions possibly in perivascular adipose tissue. UCP1 deficiency exacerbates dietary obesity-induced endothelial dysfunction, vascular inflammation, and atherogenesis in mice, which was not rectified by reconstitution of UCP1 in interscapular brown adipose tissue.

View Article and Find Full Text PDF

Pig is an important agricultural economic animal, providing large amount of meat products. With the development of functional genomics and bioinformatics, lots of genes and functional single nucleotide polymorphisms (SNPs) related to disease resistance and (or) economic traits in pigs have been identified, which provides the targets for genetic improvement by genome editing. Base editors (BEs), combining Cas9 nickase and cytidine or adenine deaminase, achieve all four possible transition mutations (C-to-T, A-to-G, T-to-C, and G-to-A) efficiently and accurately without double strand breaks (DSBs) under the protospacer adjacent motif (PAM) sequence of NGG.

View Article and Find Full Text PDF

Uncoupling protein 1 (UCP1) plays a key role in nonshivering thermogenesis and is involved in the pathogenesis of obesity. In a previous study, we generated adipocyte-specific UCP1 knock-in (UCP1-KI) pigs, which exhibited improved thermoregulatory ability and decreased fat deposition. To investigate whether UCP1 knock-in alters the lipid composition of adipose tissues, lipidomics of inguinal subcutaneous white adipose tissue (iWAT) and backfat from 6-month-old cold-treated UCP1-KI pigs and wild-type (WT) pigs were profiled.

View Article and Find Full Text PDF

Harlequin ichthyosis (HI) is a severe genetic skin disorder and caused by mutation in the ATP-binding cassette A12 (ABCA12) gene. The retinoid administration has dramatically improved long-term survival of HI, but improvements are still needed. However, the ABCA12 null mice failed to respond to retinoid treatment, which impedes the development of novel cure strategies for HI.

View Article and Find Full Text PDF

Pigs share many similarities with humans in terms of anatomy, physiology and genetics, and have long been recognized as important experimental animals in biomedical research. Using an N-ethyl-N-nitrosourea (ENU) mutagenesis screen, we previously identified a large number of pig mutants, which could be further established as human disease models. However, the identification of causative mutations in large animals with great heterogeneity remains a challenging endeavor.

View Article and Find Full Text PDF

Porcine-derived xenogeneic sources for transplantation are a promising alternative strategy for providing organs for treatment of end-stage organ failure in human patients because of the shortage of human donor organs. The recently developed blastocyst or pluripotent stem cell (PSC) complementation strategy opens a new route for regenerating allogenic organs in miniature pigs. Since the eye is a complicated organ with highly specialized constituent tissues derived from different primordial cell lineages, the development of an intact eye from allogenic cells is a challenging task.

View Article and Find Full Text PDF

Human Waardenburg syndrome 2A (WS2A) is a dominant hearing loss (HL) syndrome caused by mutations in the microphthalmia-associated transcription factor (MITF) gene. In mouse models with MITF mutations, WS2A is transmitted in a recessive pattern, which limits the study of hearing loss (HL) pathology. In the current study, we performed ENU (ethylnitrosourea) mutagenesis that resulted in substituting a conserved lysine with a serine (p.

View Article and Find Full Text PDF

Uncoupling protein 1 (UCP1) is localized on the inner mitochondrial membrane and generates heat by uncoupling ATP synthesis from proton transit across the inner membrane. UCP1 is a key element of nonshivering thermogenesis and is most likely important in the regulation of body adiposity. Pigs (Artiodactyl family ) lack a functional UCP1 gene, resulting in poor thermoregulation and susceptibility to cold, which is an economic and pig welfare issue owing to neonatal mortality.

View Article and Find Full Text PDF

Congenital hypothyroidism (CH) is one of the most prevalent endocrine diseases, for which the underlying mechanisms remain unknown; it is often accompanied by anemia and immunodeficiency in patients. Here, we created a severe CH model together with anemia and T lymphopenia to mimic the clinical features of hypothyroid patients by ethylnitrosourea (ENU) mutagenesis in Bama miniature pigs. A novel recessive c.

View Article and Find Full Text PDF

N-ethyl-N-nitrosourea (ENU) mutagenesis is a powerful tool to generate mutants on a large scale efficiently, and to discover genes with novel functions at the whole-genome level in flies, zebrafish and mice, but it has never been tried in large model animals. We describe a successful systematic three-generation ENU mutagenesis screening in pigs with the establishment of the Chinese Swine Mutagenesis Consortium. A total of 6,770 G1 and 6,800 G3 pigs were screened, 36 dominant and 91 recessive novel pig families with various phenotypes were established.

View Article and Find Full Text PDF

Pigs lack functional uncoupling protein 1 (UCP1) making them susceptible to cold. Nevertheless, several pig breeds are known to be cold resistant. The molecular mechanism(s) enabling such adaptation are currently unknown.

View Article and Find Full Text PDF

Pig shows multiple superior characteristics in anatomy, physiology, and genome that have made this species to be more suitable models for human diseases, especially for neurodegenerative diseases, because they have similar cerebral convolutions compared with human neocortex. Recently, CRISPR/Cas9 system shows enormous potential for engineering the pig genome. In this study, we expect to generate human Parkinson's disease pig model using CRISPR/Cas9 system by simultaneously targeting three distinct genomic loci, parkin/DJ-1/PINK1, in Bama miniature pigs.

View Article and Find Full Text PDF

Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation.

View Article and Find Full Text PDF

Genetic engineering in livestock was greatly enhanced by the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), which can be programmed with a single-guide RNA (sgRNA) to generate site-specific DNA breaks. However, the uncertainties caused by wide variations in sgRNA activity impede the utility of this system in generating genetically modified pigs. Here, we described a single blastocyst genotyping system to provide a simple and rapid solution to evaluate and compare the sgRNA efficiency at inducing indel mutations for a given gene locus.

View Article and Find Full Text PDF