CONSTANS (CO) is a critical regulator of flowering that combines photoperiodic and circadian signals in Arabidopsis (Arabidopsis thaliana). CO is expressed in multiple tissues, including seedling roots and young leaves. However, the roles and underlying mechanisms of CO in modulating physiological processes outside of flowering remain obscure.
View Article and Find Full Text PDFPhosphorus (P) is a macronutrient necessary for plant growth and development. Inorganic phosphate (Pi) deficiency modulates the signaling pathway of the phytohormone jasmonate in Arabidopsis thaliana, but the underlying molecular mechanism currently remains elusive. Here, we confirmed that jasmonate signaling was enhanced under low Pi conditions, and the CORONATINE INSENSITIVE1 (COI1)-mediated pathway is critical for this process.
View Article and Find Full Text PDFDiacylglycerol acyltransferase (DGAT) is the only enzyme that catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol (DAG) to form triacylglycerol (TAG). The two main types of DGAT enzymes in the woody perennial biofuel plant , JcDGAT1 and JcDGAT2, were previously characterized only in heterologous systems. In this study, we investigated the functions of and in and were found to be predominantly expressed during the late stages of seed development, in which large amounts of oil accumulated.
View Article and Find Full Text PDFBackground: Chromatin architecture is an essential factor regulating gene transcription in different cell types and developmental phases. However, studies on chromatin architecture in perennial woody plants and on the function of chromatin organization in sex determination have not been reported.
Results: Here, we produced a chromosome-scale de novo genome assembly of the woody plant Jatropha curcas with a total length of 379.
L. is monoecious with a low female-to-male ratio, which is one of the factors restricting its seed yield. Because the phytohormone cytokinins play an essential role in flower development, particularly pistil development, in this study, we elevated the cytokinin levels in flowers through transgenic expression of a cytokinin biosynthetic gene () from Arabidopsis under the control of a orthologue of () promoter that is predominantly active in flowers.
View Article and Find Full Text PDFBackground: In higher plants, inflorescence architecture is an important agronomic trait directly determining seed yield. However, little information is available on the regulatory mechanism of inflorescence development in perennial woody plants. Based on two inflorescence branching mutants, we investigated the transcriptome differences in inflorescence buds between two mutants and wild-type (WT) plants by RNA-Seq to identify the genes and regulatory networks controlling inflorescence architecture in Jatropha curcas L.
View Article and Find Full Text PDFBackground: Sacha Inchi (Plukenetia volubilis L.), which belongs to the Euphorbiaceae, has been considered a new potential oil crop because of its high content of polyunsaturated fatty acids in its seed oil. The seed oil especially contains high amounts of α-linolenic acid (ALA), which is useful for the prevention of various diseases.
View Article and Find Full Text PDFThe seed oil of is considered a potential bioenergy source that could replace fossil fuels. However, the seed yield of is low and has yet to be improved. We previously reported that exogenous cytokinin treatment increased the seed yield of .
View Article and Find Full Text PDFMitochondrial DNA B Resour
March 2018
Sacha Inchi () is a potential woody oil seed plant for producing healthy vegetable oil due to high content of α-linolenic acid in its seeds. In this study, we report the structure of the complete chloroplast genome of using high-throughput next-generation sequencing technology. The circular chloroplast genome is 161,733 bp in size, containing a pair of inverted repeat regions (IR) of 27,382 bp each, which were separated by a large single copy region (LSC) of 88,843 bp and a small single copy region (SSC) of 18,126 bp.
View Article and Find Full Text PDFPlukenetia volubilis is a promising oilseed crop due to its seeds being rich in unsaturated fatty acids, especially alpha-linolenic acid. P. volubilis is monoecious, with separate male and female flowers on the same inflorescence.
View Article and Find Full Text PDFRecent research revealed that TERMINAL FLOWER 1 (TFL1) homologues are involved in the critical developmental process of floral initiation in several plant species. In this study, the functions of three putative TFL1 homologues (JcTFL1a, JcTFL1b and JcTFL1c) in the biofuel plant Jatropha curcas were analysed using the transgenic approach. JcTFL1b and JcTFL1c, but not JcTFL1a, could complement the TFL1 function and rescue early flowering and determinate inflorescence phenotype in tfl1-14 Arabidopsis mutant, thus suggesting that JcTFL1b and JcTFL1c may be homologues of TFL1.
View Article and Find Full Text PDFMost germplasms of the biofuel plant are monoecious. A gynoecious genotype of was found, whose male flowers are aborted at early stage of inflorescence development. To investigate the regulatory mechanism of transition from monoecious to gynoecious plants, a comparative transcriptome analysis between gynoecious and monoecious inflorescences were performed.
View Article and Find Full Text PDFJatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha.
View Article and Find Full Text PDFis considered a potential biodiesel feedstock crop. Currently, the value of is limited because its seed yield is generally low. Transgenic modification is a promising approach to improve the seed yield of Although -mediated genetic transformation of has been pursued for several years, the transformation efficiency remains unsatisfying.
View Article and Find Full Text PDFReal-time quantitative PCR (RT-qPCR) is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis), a promising oilseed crop known for its polyunsaturated fatty acid (PUFA)-rich seeds.
View Article and Find Full Text PDFBackground: Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering.
View Article and Find Full Text PDFJatropha curcas is a promising renewable feedstock for biodiesel and bio-jet fuel production. To study gene expression in Jatropha in different tissues throughout development and under stress conditions, we examined a total of 11 typical candidate reference genes using real-time quantitative polymerase chain reaction (RT-qPCR) analysis, which is widely used for validating transcript levels in gene expression studies. The expression stability of these candidate reference genes was assessed across a total of 20 samples, including various tissues at vegetative and reproductive stages and under desiccation and cold stress treatments.
View Article and Find Full Text PDFPlant small heat shock proteins (sHSPs) are known to be important for environmental stress tolerance and involved in various developmental processes. In this study, two full-length cDNAs encoding sHSPs, designated JcHSP-1 and JcHSP-2, were identified and characterized from developing seeds of a promising biodiesel feedstock plant Jatropha curcas by expressed sequence tag (EST) sequencing of embryo cDNA libraries and rapid amplification of cDNA ends (RACE). JcHSP-1 and JcHSP-2 contained open-reading frames encoding sHSPs of 219 and 157 amino acids, with predicted molecular weights of 24.
View Article and Find Full Text PDFLimited information is available regarding the exact function of specific WRKY transcription factors in plant responses to heat stress. We analyzed the roles of WRKY25, WRKY26, and WRKY33, three types of group I WRKY proteins, in the regulation of resistance to heat stress. Expression of WRKY25 and WRKY26 was induced upon treatment with high temperature, whereas WRKY33 expression was repressed.
View Article and Find Full Text PDFThe transcription factor WRKY family is one type of key regulatory components of plant development and defense against stress factors. The expression profiles of three AtWRKY genes under abiotic stresses were analyzed by Northern blotting analysis. The expression of AtWRKY25, AtWRKY26, and AtWRKY33 changed during stress treatments including thermal factors, NaCl, abscisic acid (ABA) and osmotic stress, and significantly under NaCl and cold treatments, suggesting a specific role of the three AtWRKYs in adaptation to environmental stresses in plants.
View Article and Find Full Text PDFWe identified a Nodulin-related protein 1 (NRP1) encoded by At2g03440, which was previously reported to be RPS2 interacting protein in yeast-two-hybrid assay. Northern blotting showed that AtNRP1 expression was suppressed by heat stress (42 degrees C) and induced by low temperature (4 degrees C) treatment. Strong GUS staining was observed in the sites of meristematic tissues of pAtNRP1:: GUS transgenic plants, such as shoot apex and root tips, young leaf veins, stamens and stigmas of flowers, and abscission layers of young siliques.
View Article and Find Full Text PDFThe WRKY family is one of the major groups of plant-specific transcriptional regulators. Arabidopsis thaliana WRKY25, which is induced by heat stress, is one of the group I WRKY proteins and responds to both abiotic and biotic stress. This study has examined the regulatory role of WRKY25 using wrky25 mutant and over-expressing WRKY25 transgenic A.
View Article and Find Full Text PDF