Publications by authors named "Qiansong Gao"

A novel and efficient electrochemical method for electroselective and controlled cross-coupling of isoindolinones with equivalent alcohols has been developed without the need for metal catalysts and strong bases under mild conditions. The reaction provides a novel strategy for the controllable and effective synthesis of 3-alkoxyl and -hydroxymethyl-substituted isoindolinones, which is adjusted by 4-OH-TEMPO and tolerates various substrates. This protocol is an efficient tool for the construction of C-O and C-N bonds with high chemoselectivity.

View Article and Find Full Text PDF

Herein, we first report a γ-selective deuteration reaction of pyridines via H/D exchange without the need for preinstalled directing groups and transformable functional groups. The electrochemical process offers an attractive approach to producing γ-deuterated pyridines under gentle conditions. The broad substrate scope, excellent deuterium incorporation, and remarkable selectivity of the electrochemical method make it applicable for the late-stage modification of pharmaceutical molecules.

View Article and Find Full Text PDF

An efficient electrooxidative dearomatization of inactive biphenyls has been developed under mild and easy-to-operate conditions. The protocol provides a powerful tool for the rapid synthesis of cyclohexadienones in moderate to high yields with wide substrate scope and good functional group compatibility even to oxidation-sensitive motifs. This method provides an environment-friendly and direct approach for the construction of C-O bonds with high regioselectivity.

View Article and Find Full Text PDF

A one-pot synthetic method for indole/pyrrole-fused 1,4-diazepanone scaffolds has been developed. This method involves a sequential amide coupling/intramolecular aza-Michael addition of 1-indole/pyrrole-2-carboxylic acids with Morita-Baylis-Hillman-derived allylamines. The readily available starting materials, good stereoselectivity, and gram-scale synthesis make this method valuable for the construction of highly substituted fused heterocycles containing the 1,4-diazepanone moiety.

View Article and Find Full Text PDF