The inherent properties of boron nitride nanotubes (BNNTs) can be further enhanced through the control of their anisotropy. In particular, horizontally aligned BNNTs (HABNNTs) exhibit considerable potential for various applications. However, directly synthesizing HABNNTs is difficult owing to the random floating of BNNTs and the absence of directional forces.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2024
Localized excitation in traditional organic photocatalysts typically prevents the generation and extraction of photo-induced free charge carriers, limiting their activity enhancement under illumination. Here, we enhance delocalized photoexcitation of small molecular photovoltaic catalysts by weakening their electron-phonon coupling via rational fluoro-substitution. The optimized 2FBP-4F catalyst we develop here exhibits a minimized Huang-Rhys factor of 0.
View Article and Find Full Text PDFEnergy transfer is a ubiquitous phenomenon that delivers energy from a blue-shifted emitter to a red-shifted absorber, facilitating wide photonic applications. Two-dimensional (2D) semiconductors provide unique opportunities for exploring novel energy transfer mechanisms in the atomic-scale limit. Herein, we have designed a planar optical microcavity-confined MoS/hBN/WS heterojunction, which realizes the strong coupling among donor exciton, acceptor exciton, and cavity photon mode.
View Article and Find Full Text PDFFarmers are the main participants of domestic waste classification, and their willingness and behavior to participate are directly related to the success or failure of domestic waste classification and the construction of "beautiful countryside." Based on the analysis of the influence mechanism of exemplary behavior and social supervision on farmers' participation willingness and behavior, an empirical analysis of 988 survey data of farmers in Henan Province is carried out using a semi-non-parametric estimation extended model. The results show that: (1) 85.
View Article and Find Full Text PDFThe short exciton diffusion length () associated with most classical organic photocatalysts (5-10 nm) imposes severe limits on photocatalytic hydrogen evolution efficiency. Here, a photovoltaic molecule (F1) without electron-deficient units at the central building block was designed and synthesized to improve the photoluminescence quantum yield (PLQY). With the enhanced PLQY of 9.
View Article and Find Full Text PDF