Introduction: Unlike the effect of repetitive transcranial magnetic stimulation (rTMS) in treating neuropsychiatric diseases, little is known about how personal factors might account for the disparity of results from studies of cognition and rTMS. In this study, we investigated the effects of high-frequency rTMS on response inhibition control and explored the time course changes in cognitive processing and brain metabolic mechanisms after rTMS using event-related potentials (ERPs) and magnetic resonance spectroscopy (H-MRS).
Methods: Participants were all right-handed and were naive to rTMS and the Go/NoGo task.
Background: Parkinson's disease (PD) is a complex neurodegenerative disorder and hampers normal living. It has been reported that programmed cell death 4 (PDCD4) is associated with tumor suppression, inflammatory response, and apoptosis.
Objective: The aim of this study was to investigate the role of PDCD4 in PD.