Spinal cord injury (SCI) represents a profound central nervous system affliction, resulting in irreversibly compromised daily activities and disabilities. SCI involves excessive inflammatory responses, which are characterized by the existence of high levels of proinflammatory M1 macrophages, and neuronal mitochondrial energy deficit, exacerbating secondary damage and impeding axon regeneration. This study delves into the mechanistic intricacies of SCI, offering insights from the perspectives of neuroimmune regulation and mitochondrial function, leading to a pro-fibrotic macrophage phenotype and energy-supplying deficit.
View Article and Find Full Text PDFThe flow stress of face-centered cubic (FCC) metals exhibits a rapid increase near a strain rate of 10 s under fixed-strain conditions. However, many existing constitutive models either fail to capture the mechanical characteristics of this plastic deformation or use piecewise strain-rate hardening models to describe this phenomenon. Unfortunately, these piecewise models may suffer from issues such as discontinuity of physical quantities and difficulties in determining segment markers, and struggle to reflect the underlying physical mechanisms that give rise to this mutation phenomenon.
View Article and Find Full Text PDFBackground: Cervical spinal malalignment and instability are frequently occurring pathological conditions involving neck pain, radiculopathy, and myelopathy, often requiring surgical intervention. Accurate assessment of cervical alignment and instability are essential in surgical planning and evaluating postoperative outcomes.
Purpose: To automatically measure the sagittal alignment and instability of the cervical spine, we develop a novel deep-learning model by detecting landmarks on cervical radiographs.
The shaped charge jet formation of a Zr-based amorphous alloy and the applicability of different numerical algorithms to describe the jet formed were experimentally and numerically investigated. X-ray experiments were performed to study jet characteristics. The numerical results for the Zr-based amorphous alloy jet formed via the Euler and smooth particle hydrodynamics (SPH) algorithms were compared and analyzed using the Autodyn hydrocode.
View Article and Find Full Text PDFIntervertebral disc degeneration (IDD) has been identified as one of the predominant factors leading to persistent low back pain and disability in middle-aged and elderly people. Dysregulation of Prostaglandin E2 (PGE2) can cause IDD, while low-dose celecoxib can maintain PGE2 at the physiological level and activate the skeletal interoception. Here, as nano fibers have been extensively used in the treatment of IDD, novel polycaprolactone (PCL) nano fibers loaded with low-dose celecoxib were fabricated for IDD treatment.
View Article and Find Full Text PDFSensory nerves are long being recognized as collecting units of various outer stimuli; recent advances indicate that the sensory nerve also plays pivotal roles in maintaining organ homeostasis. Here, this study shows that sensory nerve orchestrates intervertebral disc (IVD) homeostasis by regulating its extracellular matrix (ECM) metabolism. Specifically, genetical sensory denervation of IVD results in loss of IVD water preserve molecule chondroitin sulfate (CS), the reduction of CS bio-synthesis gene chondroitin sulfate synthase 1 (CHSY1) expression, and dysregulated ECM homeostasis of IVD.
View Article and Find Full Text PDFHow to effectively reduce the damage of frequent accidental explosions and explosion attacks to existing walls is an important concern of the blast resistance field. In the present study, the influence of the foamed concrete (density 820 kg/m, water-cement ratio 0.4) coating thickness on the blast resistance of a 120 mm RC (reinforced concrete) wall was studied through blast experiments, numerical simulations, and shock wave theory.
View Article and Find Full Text PDFBackground: Scoliosis is a type of spinal deformity, which is harmful to a person's health. In severe cases, it can trigger paralysis or death. The measurement of Cobb angle plays an essential role in assessing the severity of scoliosis.
View Article and Find Full Text PDFThis study proposes to utilize modified Nano-SiO₂/fluorinated polyacrylate emulsion that was synthesized with a semi-continuous starved seed emulsion polymerization to improve the hydrophobicity, thermal stability, and UV-Vis absorption of polyacrylate emulsion film. To verify the proposed method, a series inspection had been conducted to investigate the features of the emulsion film. The morphological analysis indicated that Nano-SiO₂ was surrounded by a silane molecule after modification, which can efficiently prevent silica nanoparticles from aggregating.
View Article and Find Full Text PDF