Background/aims: Mutations in ABCA4 cause Stargardt macular degeneration, which invariably ends in legal blindness. We studied two common mutants, A1038V (in NBD1) and G1961E (in NBD2), with the purpose of exploring how they interact with the cell's quality control mechanism. The study was designed to determine how these mutants can be rescued.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in genes encoding the polycystin (PC) 1 and 2 proteins. The goal of this study was to determine the role of calcium in regulating cyst growth. Stromal interaction molecule 1 (STIM1) protein expression was 15-fold higher in PC1-null proximal tubule cells (PN) than in heterozygote (PH) controls and 2-fold higher in an inducible, PC1 knockout, mouse model of ADPKD compared to a non-cystic match control.
View Article and Find Full Text PDFThe missing phenylalanine at position 508, located in nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane regulator (CFTR), is the most common cystic fibrosis mutation. Severe disease-causing mutations also occur in NBD2. To provide information on potential therapeutic strategies for mutations in NBD2, we used a combination of biochemical, cell biological and electrophysiological approaches and newly created cell lines to study two disease-causing NBD2 mutants, N1303K and S1235R.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) is associated with progressive enlargement of cysts, leading to a decline in function and renal failure that cannot be prevented by current treatments. Mutations in and , encoding the polycystin 1 and 2 proteins, induce growth-related pathways, including heat shock proteins, as occurs in some cancers, raising the prospect that pharmacological interventions that target these pathways might alleviate or prevent ADPKD. Here, we demonstrate a role for VX-809, a corrector of cystic fibrosis transmembrane conductance regulator (CFTR), conventionally used to manage cystic fibrosis in reducing renal cyst growth.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) is associated with progressive enlargement of multiple renal cysts, often leading to renal failure that cannot be prevented by a current treatment. Two proteins encoded by two genes are associated with ADPKD: PC1 (), primarily a signaling molecule, and PC2 (), a Ca channel. Dysregulation of cAMP signaling is central to ADPKD, but the molecular mechanism is unresolved.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
October 2017
Adult-onset autosomal-dominant polycystic kidney disease (ADPKD) is caused by mutations in either the or gene, leading to malfunction of their gene products, polycystin 1 or 2. Histone deacetylase 6 (HDAC6) expression and activity are increased in mutant renal epithelial cells. Here we studied the effect of ACY-1215, a specific HDAC6 inhibitor, on cyst growth in ADPKD.
View Article and Find Full Text PDFAbnormal proliferation of cyst-lining epithelium and increased intracystic fluid secretion via the cystic fibrosis transmembrane conductance regulator (CFTR) are thought to contribute to cyst growth in autosomal dominant polycystic kidney disease (ADPKD). Histone deacetylase 6 (HDAC6) expression and activity are increased in certain cancers, neurodegenerative diseases, and in Pkd1-mutant renal epithelial cells. Inhibition of HDAC6 activity with specific inhibitors slows cancer growth.
View Article and Find Full Text PDFHuman Ether á go-go Related Gene potassium channels form the rapid component of the delayed-rectifier (IKr) current in the heart. The N-terminal 'eag' domain, which is composed of a Per-Arnt-Sim (PAS) domain and a short PAS-cap region, is a critical regulator of hERG channel function. In previous studies, we showed that isolated eag (i-eag) domains rescued the dysfunction of long QT type-2 associated mutant hERG R56Q channels, by substituting for defective eag domains, when the channels were expressed in Xenopus oocytes or HEK 293 cells.
View Article and Find Full Text PDFHuman ether-á-go-go (eag)-related gene (hERG) potassium channels play a critical role in cardiac repolarization and are characterized by unusually slow closing (deactivation) kinetics. The N-terminal "eag" domain and a C-terminal C-linker/cyclic nucleotide-binding homology domain (CNBHD) are required for regulation of slow deactivation. The region between the S4 and S5 transmembrane domains (S4-S5 linker) is also implicated in this process, but the mechanism for regulation of slow deactivation is unclear.
View Article and Find Full Text PDFDaurisoline (1) is a bis-benzylisoquinoline alkaloid isolated from the rhizomes of Menispermum dauricum. The antiarrhythmic effect of 1 has been demonstrated in different experimental animals. In previous studies, daurisoline (1) prolonged action potential duration (APD) in a normal use-dependent manner.
View Article and Find Full Text PDFPrevious studies have shown that the bisbenzyl isoquinoline alkaloid dauricine can protect the brain against ischemic damage. We investigated here whether dauricine could inhibit neuronal apoptosis and modulate Bcl-2 family protein levels in a rat model of transient focal cerebral ischemia. Male Sprague-Dawley rats underwent a 60 min temporary occlusion of the middle cerebral artery (MCAO).
View Article and Find Full Text PDFOur previous studies have shown that daurisoline (DS) exerted antiarrhythmic effects on various experimental arrhythmias. In this study, the effects of DS on early afterdepolarizations (EADs) and its possible mechanisms have been investigated. Cardiac hypertrophy was induced in rabbits by coarctating the abdominal aorta.
View Article and Find Full Text PDFCan J Physiol Pharmacol
November 2009
We have previously reported that dauricine exerted antiarrhythmic effects on various experimental arrhythmias. To further clarify its mechanism, the effects of dauricine on action potential duration (APD), early afterdepolarizations (EADs), triangulation, which is defined as the repolarization time from APD at 30% level (APD30) to APD at 90% level (APD90), and L-type calcium current (I(Ca-L)) were studied using standard microelectrode techniques on rabbit papillary muscles and whole-cell patch clamp techniques on single myocytes isolated from rabbits by enzymatic digestion, respectively. Cardiac hypertrophy was induced by coarctating the abdominal aorta of rabbits.
View Article and Find Full Text PDFOur previous experimental studies showed that dauricine could protect the brain from ischemic damage, but the underlying mechanisms were unknown. In this study, we investigated the effect of dauricine on the changes of the inflammation process induced by ischemia/reperfusion (I/R). After I/R, the enzyme activity of MPO, the expression of ICAM-1 and the transcription of IL-1beta and TNF-alpha mRNA were all significantly increased (p < 0.
View Article and Find Full Text PDF