Introduction: head blight (FHB) has a large influence on both the yield and quality of wheat grain worldwide. Host resistance is the most effective method for controlling FHB, but unfortunately, very few genetic resources on FHB resistance are available; therefore, identifying novel resistance genes or quantitative trait loci (QTLs) is valuable.
Methods: Here, a recombinant inbred line (RIL) population containing 451 lines derived from the cross L661/PI672538 was sown in four different environments (2019CZ, 2019CZ, 2021QL and 2021WJ).
Breeders agree that leaf senescence is a favorable process for wheat seed yield improvement due to the remobilization of leaf nutrients. However, several studies have suggested that staying green may be an important strategy for further increasing wheat yields. In this study, we performed a comparative transcriptome analysis between wheat cultivars CN17 and CN19 after heading and also measured photosynthetic parameters, chlorophyll (Chl) contents, and antioxidant enzyme activities at various time points after heading.
View Article and Find Full Text PDFFusarium head blight (FHB), mainly caused by , is one of the most destructive fungal diseases of wheat ( L.). Because of the quantitative nature of FHB resistance, its mechanism is poorly understood.
View Article and Find Full Text PDFTwo winter wheat cultivars (the functional stay-green CN12 and non-stay-green CN19) were used to investigate the effects of ear-shading on grain yield and to elucidate the differential mechanisms of different cultivars. The photosynthetic parameters, chlorophyll fluorescence, antioxidant enzyme activities, and chlorophyll contents were measured 0, 15 and 30 days after heading (DAH) under both shaded and non-shaded conditions. The final grain-yield index was also measured.
View Article and Find Full Text PDF