A secondary contact zone (SCZ) is an area where incipient species or divergent populations may meet, mate, and hybridize. Due to the diverse patterns of interspecific hybridization, SCZs function as field labs for illuminating the on-going evolutionary processes of speciation and the establishment of reproductive isolation. Interspecific hybridization is widely present in avian populations, making them an ideal system for SCZ studies.
View Article and Find Full Text PDFBackground: Sheep and goats have undergone domestication and improvement to produce similar phenotypes, which have been greatly impacted by structural variants (SVs). Here, we report a high-quality chromosome-level reference genome of Asiatic mouflon, and implement a comprehensive analysis of SVs in 897 genomes of worldwide wild and domestic populations of sheep and goats to reveal genetic signatures underlying convergent evolution.
Results: We characterize the SV landscapes in terms of genetic diversity, chromosomal distribution and their links with genes, QTLs and transposable elements, and examine their impacts on regulatory elements.
Endotherms recently expanding to cold environments generally exhibit strong physiological acclimation to sustain high body temperature. During this process, gut microbes likely play a considerable role in host physiological functions, including digestion and thermogenesis. The light-vented bulbul represents one such species.
View Article and Find Full Text PDFGenomic selection using single nucleotide polymorphism (SNP) markers is now intensively investigated in breeding and has been widely utilized for genetic improvement. Currently, several studies have used haplotype (consisting of multiallelic SNPs) for genomic prediction and revealed its performance advantage. In this study, we comprehensively evaluated the performance of haplotype models for genomic prediction in 15 traits, including 6 growth, 5 carcass, and 4 feeding traits in a Chinese yellow-feathered chicken population.
View Article and Find Full Text PDFUnderstanding the genetic mechanisms of phenotypic variation in hybrids between domestic animals and their wild relatives may aid germplasm innovation. Here, we report the high-quality genome assemblies of a male Pamir argali ( , 2 = 56), a female Tibetan sheep ( , 2 = 54), and a male hybrid of Pamir argali and domestic sheep, and the high-throughput sequencing of 425 ovine animals, including the hybrids of argali and domestic sheep. We detected genomic synteny between Chromosome 2 of sheep and two acrocentric chromosomes of argali.
View Article and Find Full Text PDFThe size of reference population is an important factor affecting genomic prediction. Thus, combining different populations in genomic prediction is an attractive way to improve prediction ability. However, combining multireference population roughly cannot increase the prediction accuracy as well as expected in pig.
View Article and Find Full Text PDF