Publications by authors named "Qiangfeng C Zhang"

Despite the recent breakthrough in structure determination and prediction of proteins, the structural investigation of carbohydrates remains a challenge. Here, we report the cryo-EM analysis of a glycofibril found in the freshwater in the Tsinghua Lotus Pond. The fibril, which we name TLP-4, is made of a linear chain of tetrapeptide repeats coated with >4 nm thick glycans.

View Article and Find Full Text PDF

RNA molecules function in numerous biological processes by folding into intricate structures. Here we present RASP v2.0, an updated database for RNA structure probing data featuring a substantially expanded collection of datasets along with enhanced online structural analysis functionalities.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are changing how they study proteins, moving from just figuring out their shapes to discovering new ones that they didn't know about before.
  • They used a special technique called cryoelectron microscopy to look at tiny samples from a pond and found two similar protein structures called TLP-1a and TLP-1b.
  • These proteins are unique and might be linked to unknown bacteria, helping researchers learn more about proteins and their functions.
View Article and Find Full Text PDF

RNA molecules serve a wide range of functions that are closely linked to their structures. The basic structural units of RNA consist of single- and double-stranded regions. In order to carry out advanced functions such as catalysis and ligand binding, certain types of RNAs can adopt higher-order structures.

View Article and Find Full Text PDF

Computational methods are desired for single-cell-resolution spatial transcriptomics (ST) data analysis to uncover spatial organization principles for how individual cells exert tissue-specific functions. Here, we present ST data analysis via interaction-aware cell embedding (SPACE), a deep-learning method for cell-type identification and tissue module discovery from single-cell-resolution ST data by learning a cell representation that captures its gene expression profile and interactions with its spatial neighbors. SPACE identified spatially informed cell subtypes defined by their special spatial distribution patterns and distinct proximal-interacting cell types.

View Article and Find Full Text PDF

Influenza A virus (IAV) represents a constant public health threat. The single-stranded, segmented RNA genome of IAV is replicated in host cell nuclei as a series of 8 ribonucleoprotein complexes (vRNPs) with RNA structures known to exert essential function to support viral replication. Here, we investigate RNA secondary structures and RNA interactions networks of the IAV genome and construct an in vivo structure model for each of the 8 IAV genome segments.

View Article and Find Full Text PDF

Selection of the pre-mRNA branch site (BS) by the U2 small nuclear ribonucleoprotein (snRNP) is crucial to prespliceosome (A complex) assembly. The RNA helicase PRP5 proofreads BS selection but the underlying mechanism remains unclear. Here we report the atomic structures of two sequential complexes leading to prespliceosome assembly: human 17S U2 snRNP and a cross-exon pre-A complex.

View Article and Find Full Text PDF

Functional studies of long noncoding RNAs (lncRNAs) have been hindered by the lack of methods to assess their evolution. Here we present lncRNA Homology Explorer (lncHOME), a computational pipeline that identifies a unique class of long noncoding RNAs (lncRNAs) with conserved genomic locations and patterns of RNA-binding protein (RBP) binding sites (coPARSE-lncRNAs). Remarkably, several hundred human coPARSE-lncRNAs can be evolutionarily traced to zebrafish.

View Article and Find Full Text PDF

Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites. However, what determines this selective initiation of translation between conditions remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Retroelements are key players in genome evolution and have potential uses as gene-editing tools; this study focuses on the eukaryotic R2 retrotransposon and its interactions with DNA and RNA.
  • The researchers used cryo-EM imaging along with biochemical and sequencing methods to identify two important DNA regions, Drr and Dcr, necessary for the retrotransposon's ability to recognize and cleave DNA.
  • They found that regulatory RNAs play a crucial role by influencing the timing of DNA cleavage and reverse transcription, leading to a better understanding of retrotransposon mechanics and possible applications in genetic reprogramming.
View Article and Find Full Text PDF

Sperm contributes essential paternal factors, including the paternal genome, centrosome, and oocyte-activation signals, to sexual reproduction. However, it remains unresolved how sperm contributes its RNA molecules to regulate early embryonic development. Here, we show that the Caenorhabditis elegans paternal protein SPE-11 assembles into granules during meiotic divisions of spermatogenesis and later matures into a perinuclear structure where sperm RNAs localize.

View Article and Find Full Text PDF

Fundamental to post-transcriptional regulation, the in vivo binding of RNA binding proteins (RBPs) on their RNA targets heavily depends on RNA structures. To date, most methods for RBP-RNA interaction prediction are based on RNA structures predicted from sequences, which do not consider the various intracellular environments and thus cannot predict cell type-specific RBP-RNA interactions. Here, we present a web server PrismNet that uses a deep learning tool to integrate in vivo RNA secondary structures measured by icSHAPE experiments with RBP binding site information from UV cross-linking and immunoprecipitation in the same cell lines to predict cell type-specific RBP-RNA interactions.

View Article and Find Full Text PDF

The spectrin-based membrane skeleton is a ubiquitous membrane-associated two-dimensional cytoskeleton underneath the lipid membrane of metazoan cells. Mutations of skeleton proteins impair the mechanical strength and functions of the membrane, leading to several different types of human diseases. Here, we report the cryo-EM structures of the native spectrin-actin junctional complex (from porcine erythrocytes), which is a specialized short F-actin acting as the central organizational unit of the membrane skeleton.

View Article and Find Full Text PDF

Recent progress in cryo-EM research has ignited a revolution in biological macromolecule structure determination. Resolution is an essential parameter for quality assessment of a cryo-EM density map, and it is known that resolution varies in different regions of a map. Currently available methods for local resolution estimation require manual adjustment of parameters and in some cases necessitate acquisition or de novo generation of so-called "half maps".

View Article and Find Full Text PDF

TRIM33 is a chromatin reader required for mammalian mesendoderm differentiation after activation of Nodal signaling, while its role in mESCs is still elusive. Here, we report that TRIM33 co-localizes with promyelocytic leukemia nuclear bodies (PML-NBs) specifically in mESCs, to mediate Nodal signaling-directed transcription of Lefty1/2. We show that TRIM33 puncta formation in mESCs depends on PML and on specific assembly of PML-NBs.

View Article and Find Full Text PDF

Background: RNA G-quadruplexes (rG4s) are non-canonical structural motifs that have diverse functional and regulatory roles, for instance in transcription termination, alternative splicing, mRNA localization and stabilization, and translational process. We recently developed the RNA G-quadruplex structure sequencing (rG4-seq) technique and described rG4s in both eukaryotic and prokaryotic transcriptomes. However, rG4-seq suffers from a complicated gel purification step and limited PCR product yield, thus requiring a high amount of RNA input, which limits its applicability in more physiologically or clinically relevant studies often characterized by the limited availability of biological material and low RNA abundance.

View Article and Find Full Text PDF

Computational tools for integrative analyses of diverse single-cell experiments are facing formidable new challenges including dramatic increases in data scale, sample heterogeneity, and the need to informatively cross-reference new data with foundational datasets. Here, we present SCALEX, a deep-learning method that integrates single-cell data by projecting cells into a batch-invariant, common cell-embedding space in a truly online manner (i.e.

View Article and Find Full Text PDF

A capacity to detect the binding profiles of RNA targets for an RNA-binding protein (RBP) under different cellular conditions is essential to understand the functions of the RBP in posttranscriptional regulation. However, the prediction of RBP binding sites in vivo remains challenging. Tools that predict RBP-RNA interactions using sequence and/or predicted structures cannot reflect the exact state of RNA in vivo.

View Article and Find Full Text PDF

Beyond transferring genetic information, RNAs are molecules with diverse functions that include catalyzing biochemical reactions and regulating gene expression. Most of these activities depend on RNAs' specific structures. Therefore, accurately determining RNA structure is integral to advancing our understanding of RNA functions.

View Article and Find Full Text PDF

Transforming growth factor β (TGF-β) superfamily proteins are potent regulators of cellular development and differentiation. Nodal/Activin/TGF-β and BMP ligands are both present in the intra- and extracellular milieu during early development, and cross-talk between these two branches of developmental signaling is currently the subject of intense research focus. Here, we show that the Nodal induced lncRNA-Smad7 regulates cell fate determination via repression of BMP signaling in mouse embryonic stem cells (mESCs).

View Article and Find Full Text PDF

The combined use of transcriptome and translatome as indicators of gene expression profiles is usually more accurate than the use of transcriptomes alone, especially in cell types governed by translational regulation, such as mammalian oocytes. Here, we developed a dual-omics methodology that includes both transcriptome and translatome sequencing (T&T-seq) of single-cell oocyte samples, and we used it to characterize the transcriptomes and translatomes during mouse and human oocyte maturation. T&T-seq analysis revealed distinct translational expression patterns between mouse and human oocytes and delineated a sequential gene expression regulation from the cytoplasm to the nucleus during human oocyte maturation.

View Article and Find Full Text PDF

The most lethal subtype of diffuse intrinsic pontine glioma (DIPG) is H3K27M. Although ACVR1 mutations have been implicated in the pathogenesis of this currently incurable disease, the impacts of bone morphogenetic protein (BMP) signaling on more than 60% of H3K27M DIPG carrying ACVR1 wild-type remain unknown. Here we show that BMP ligands exert potent tumor-suppressive effects against H3.

View Article and Find Full Text PDF

RNAs perform their function by forming specific structures, which can change across cellular conditions. Structure probing experiments combined with next generation sequencing technology have enabled transcriptome-wide analysis of RNA secondary structure in various cellular conditions. Differential analysis of structure probing data in different conditions can reveal the RNA structurally variable regions (SVRs), which is important for understanding RNA functions.

View Article and Find Full Text PDF

RNA structures are essential to support RNA functions and regulation in various biological processes. Recently, a range of novel technologies have been developed to decode genome-wide RNA structures and novel modes of functionality across a wide range of species. In this review, we summarize key strategies for probing the RNA structurome and discuss the pros and cons of representative technologies.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play important roles in regulated gene expression and miRNA biogenesis is also subject to regulation, together constituting critical regulatory circuitries in numerous physiological and pathological processes. As a dsRNA binding protein, interleukin enhancer binding factor 3 (ILF3) has been implicated as a negative regulator in miRNA biogenesis, but the mechanism and specificity have remained undefined. Here, combining small-RNA-seq and CLIP-seq, we showed that ILF3 directly represses many miRNAs or perhaps other types of small RNAs annotated in both miRBase and MirGeneDB.

View Article and Find Full Text PDF