Publications by authors named "Qiangde Duan"

() is an intracellular parasite, and its regulation of host cell apoptosis directly affects its parasitism. Studies link -induced apoptosis to abnormal expression of mammalian STE20-like protein kinase 2 (MST2), but its precise role remains unclear. In this study, the regulatory roles in apoptosis and pathogenicity of infection were identified and .

View Article and Find Full Text PDF

(1) : The adjuvant properties of flagellin from various bacterial species have been extensively studied; however, a systematic comparison of the immunoadjuvant effects of flagellins from different bacterial species is lacking. This study aims to analyze the amino acid sequences and structural features of flagellins from (FliC), serotype Typhimurium (FliC), and (FliC), and to evaluate their adjuvant activities in terms of Toll-like receptor 5 (TLR5) activation, antibody production, and cytokine responses in a murine model. (2) : Bioinformatics analysis was conducted to compare the amino acid sequences and structural domains (D0, D1, D2, and D3) of flagellins from the three bacterial species.

View Article and Find Full Text PDF

The COVID-19 pandemic has resulted in over 772 million confirmed cases, including nearly 7 million deaths, according to the World Health Organization (WHO). Leveraging rapid development, accelerated vaccine approval processes, and large-scale production of various COVID-19 vaccines using different technical platforms, the WHO declared an end to the global health emergency of COVID-19 on May 5, 2023. Current COVID-19 vaccines encompass inactivated, live attenuated, viral vector, protein subunit, nucleic acid (DNA and RNA), and virus-like particle (VLP) vaccines.

View Article and Find Full Text PDF

Background: Toxoplasma gondii is an obligate intracellular protozoan parasite that causes severe threats to humans and livestock. Macrophages are the cell type preferentially infected by T. gondii in vivo.

View Article and Find Full Text PDF

There is increasing evidence indicating that the production of heat-labile enterotoxin (LT) enhances bacterial adherence within in vitro and in vivo models. However, which subunit plays the main role, and the precise regulatory mechanisms remain unclear. To further elucidate the contribution of the A subunit of LT (LTA) and the B subunit of LT (LTB) in LT-enhanced bacterial adherence, we generated several LT mutants where their ADP-ribosylation activity or GM1 binding ability was impaired and evaluated their abilities to enhance the two LT-deficient strains (1836-2 and EcNc) adherence.

View Article and Find Full Text PDF

Fowl typhoid is an important disease of chickens and turkeys, which is caused by Salmonella Gallinarum (S. Gallinarum). Vaccines with high levels of protective effects against fowl typhoid need to be developed for the poultry industry.

View Article and Find Full Text PDF

As one of the crucial enterotoxins secreted by enterotoxigenic Escherichia coli (ETEC), heat-labile enterotoxin (LT) enhances bacterial adherence both in vivo and in vitro; however, the underlying mechanism remains unclear. To address this, we evaluated the adherence of LT-producing and LT-deficient ETEC strains using the IPEC-J2 cell model. The expression levels of inflammatory cytokines and chemokines, and tight-junction proteins were evaluated in IPEC-J2 cells after infection with various ETEC strains.

View Article and Find Full Text PDF

There are no licensed vaccines against enterotoxigenic Escherichia coli (ETEC), a leading cause of children's diarrhea and travelers' diarrhea. Recently, protein-based vaccine candidate MecVax was demonstrated to induce functional antibodies against both ETEC toxins (heat-stable toxin [STa] and heat-labile toxin [LT]) and seven ETEC adhesins (CFA/I and CS1 to CS6) and to protect against ETEC clinical diarrhea or intestinal colonization preclinically. Those studies used intraperitoneal, intramuscular, and intradermal routes, and a dose range for MecVax protein antigens, toxoid fusion 3xSTa-mnLT, and adhesin CFA/I/II/IV MEFA has not been investigated.

View Article and Find Full Text PDF

Bacterial flagellin is a potent powerful adjuvant, which exerts its adjuvant activity by activating the Toll-like receptor 5 (TLR5) signaling pathway to induce host pro-inflammatory responses. Flagellin of Salmonella typhimurium (S. typhimurium) has shown strong adjuvant effects for a variety of vaccine candidates, however, the adjuvanticity of different serotypes of Escherichia coli (E.

View Article and Find Full Text PDF

Avian pathogenic E. coli (APEC) caused avian colibacillosis is mostly common in poultry industry worldwide. APEC virulence factors lead to pathogenesis and the quorum sensing (QS) system is actively involved in the regulation of these virulence factors.

View Article and Find Full Text PDF
Article Synopsis
  • The innate immune system recognizes invading microorganisms using pattern recognition receptors (PRRs), particularly Toll-like receptors (TLRs), which exist in both invertebrates and vertebrates.
  • TLRs activate various signaling pathways upon detecting pathogens, contributing to the production of inflammatory cytokines and enhancing both innate and adaptive immunity.
  • The paper focuses on how TLRs specifically identify key microbial components and looks at their role in shaping immune responses, offering new insights into potential therapeutic strategies against infections.
View Article and Find Full Text PDF

Salmonella Enteritidis (SE) causes both horizontal and vertical transmission of diseases in poultry industry and is also one of the main causes of human food poisoning. Sequence analysis of the sef operon of poultry-derived Salmonella serotypes showed the presence of an entire sef operon in SE, whereas only sef pseudogenes were found in Salmonella Gallinarum and Salmonella Pullorum. Subsequently, the sef operon of SE was cloned into the pBR322 plasmid and expressed in a modified Escherichia coli strain SE5000.

View Article and Find Full Text PDF

There are no vaccines licensed for enterotoxigenic Escherichia coli (ETEC), a leading cause of diarrhea for children in developing countries and international travelers. Virulence heterogeneity among strains and difficulties identifying safe antigens for protective antibodies against STa, a potent but poorly immunogenic heat-stable toxin which plays a key role in ETEC diarrhea, are challenges in ETEC vaccine development. To overcome these challenges, we applied a toxoid fusion strategy and a novel epitope- and structure-based multiepitope fusion antigen (MEFA) vaccinology platform to construct two chimeric multivalent proteins, toxoid fusion 3xSTa-mnLT and adhesin CFA/I/II/IV MEFA, and demonstrated that the proteins induced protective antibodies against STa and heat-labile toxin (LT) produced by all ETEC strains or the seven most important ETEC adhesins (CFA/I and CS1 to CS6) expressed by the ETEC strains causing 60 to 70% of diarrheal cases and moderate to severe cases.

View Article and Find Full Text PDF

Type 1 fimbriae are important virulence determinants of some Gram-negative pathogens, which promote bacterial colonization. The fimbrial rod is primarily composed of multiple copies of the major fimbrial subunit FimA. FimH adhesin, however, is present as a fibrillar tip structure that drive bacteria binding to host cellular mannose containing receptor.

View Article and Find Full Text PDF

Microbes from diverse types of habitats are continuously exposed to external challenges, which may include acidic, alkaline, and toxic metabolites stress as well as nutrient deficiencies. To promote their own survival, bacteria have to rapidly adapt to external perturbations by inducing particular stress responses that typically involve genetic and/or cellular changes. In addition, pathogenic bacteria need to sense and withstand these environmental stresses within a host to establish and maintain infection.

View Article and Find Full Text PDF

Fimbriae-mediated initial adherence is the initial and critical step required for enterotoxigenic Escherichia coli (ETEC) infection. Therefore, vaccine candidates have been developed that target these fimbriae and induce specific anti-fimbriae antibodies to block initial ETEC attachment. While this vaccine effectively protects against ETEC-associated post-weaning diarrhea (PWD), developing a broadly effective vaccine against initial ETEC attachment remains a challenging problem, owing to the immunological heterogeneity among these antigens.

View Article and Find Full Text PDF

Enteric viral and bacterial infections continue to be a leading cause of mortality and morbidity in young children in low-income and middle-income countries, the elderly, and immunocompromised individuals. Vaccines are considered an effective and practical preventive approach against the predominantly fecal-to-oral transmitted gastroenteritis particularly in the resource-limited countries or regions where implementation of sanitation systems and supply of safe drinking water are not quickly achievable. While vaccines are available for a few enteric pathogens including rotavirus and cholera, there are no vaccines licensed for many other enteric viral and bacterial pathogens.

View Article and Find Full Text PDF

Fimbriae mediate the initial adherence of enterotoxigenic (ETEC) to the piglet small intestine and play an important role in development of ETEC-driven postweaning diarrhea (PWD). PWD inflicts huge economic losses on the swine industry each year, making development of alternative treatment and prevention measures for PWD essential. Vaccine candidates that induce antifimbria antibodies that block the initial attachment and colonization of ETEC pathogens with fimbriae are one approach that could help prevent PWD.

View Article and Find Full Text PDF

Heat-labile toxin (LT) is a well-characterized powerful enterotoxin produced by enterotoxigenic (ETEC). This toxin is known to contribute to diarrhea in young children in developing countries, international travelers, as well as many different species of young animals. Interestingly, it has also been revealed that LT is involved in other activities in addition to its role in enterotoxicity.

View Article and Find Full Text PDF

Antibodies that block the adherence of enterotoxigenic Escherichia coli (ETEC) to host intestinal epithelial cells are protective. Multiepitope-fusion-antigens (MEFAs) carrying epitopes of ETEC adhesin major subunits or tip minor subunits induced antibodies against ETEC adherence. Adherence inhibition effectiveness of antibodies induced by major subunit epitopes versus minor tip subunit epitopes, however, has not been comparatively characterized.

View Article and Find Full Text PDF

Probiotics have great potential to be engineered into oral vaccine delivery systems, which can facilitate elicitation of mucosal immunity without latent risks of pathogenicity. Combined with the progressive understanding of probiotics and the mucosal immune system as well as the advanced biotechniques of genetic engineering, the development of promising oral vaccine vectors based on probiotics is available while complicated and demanding. Therefore, a systematical view on the design of practical probiotic vectors is necessary, which will help to logically analyze and resolve the problems that might be neglected during our exploration.

View Article and Find Full Text PDF

Enterotoxigenic Escherichia coli (ETEC) producing type Ib heat-stable toxin (STa) are a main cause of children's diarrhea and travelers' diarrhea, thus STa needs to be targeted in ETEC vaccine development. However, because this 19-amino acid STa is poorly immunogenic, attempts to genetically fuse or chemically couple it to carrier proteins have been made to enhance STa immunogenicity. In this study, we selected one genetic fusion and one chemical conjugate to comparatively evaluate STa immunogenicity.

View Article and Find Full Text PDF

Enterotoxigenic (ETEC) bacteria remain a leading cause of children's diarrhea and travelers' diarrhea. Vaccines that induce antibodies to block ETEC bacterial adherence and to neutralize toxin enterotoxicity can be effective against ETEC-associated diarrhea. Recent studies showed that 6xHis-tagged CFA/I/II/IV multiepitope fusion antigen (MEFA) induced broad-spectrum antibodies to inhibit adherence of the seven most important ETEC adhesins (CFA/I, CS1 to CS6) (Ruan et al.

View Article and Find Full Text PDF

Enterotoxigenic (ETEC) strains producing heat-labile toxin (LT) and/or heat-stable toxin (STa) are a top cause of children's diarrhea and travelers' diarrhea. Holotoxin-structured GM-binding LT is a strong immunogen and an effective adjuvant, and can serve a carrier or a platform for multivalent vaccine development. However, the significance of peptide domains or epitopes of LT particularly enzymatic LT subunit in association with LT enterotoxicity and immunogenicity has not been characterized.

View Article and Find Full Text PDF