Gravimeter measures gravitational acceleration, which is valuable for geophysical applications such as hazard forecasting and prospecting. Gravimeters have historically been large and expensive instruments. Micro-Electro-Mechanical-System gravimeters feature small size and low cost through scaling and integration, which may allow large-scale deployment.
View Article and Find Full Text PDFPhase unwrapping is a crucial step in obtaining the final physical information in the field of optical metrology. Although good at dealing with phase with discontinuity and noise, most deep learning-based spatial phase unwrapping methods suffer from the complex model and unsatisfactory performance, partially due to simple noise type for training datasets and limited interpretability. This paper proposes a highly efficient and robust spatial phase unwrapping method based on an improved SegFormer network, SFNet.
View Article and Find Full Text PDFTwisted bilayer (TB) transition metal dichalcogenides (TMDCs) beyond TB-graphene are considered an ideal platform for investigating condensed matter physics, due to the moiré superlattices-related peculiar band structures and distinct electronic properties. The growth of large-area and high-quality TB-TMDCs with wide twist angles would be significant for exploring twist angle-dependent physics and applications, but remains challenging to implement. Here, we propose a reconfiguring nucleation chemical vapor deposition (CVD) strategy for directly synthesizing TB-MoS with twist angles from 0° to 120°.
View Article and Find Full Text PDFAlthough the Lissajous frequency modulated (LFM) mode can improve the long-term and temperature stability of the scale factor (SF) for mode mismatch MEMS gyroscopes, its SF nonlinearity poses a significant limitation for full-scale accuracy maintenance. This paper examines the interaction effects among stiffness coupling, system phase delay, readout demodulation phase shift, and velocity amplitude mismatch within the control process. Based on the completion of frequency difference control and demodulation phase matching, we clarify that the remaining stiffness coupling and residual system phase error are the primary factors influencing SF nonlinearity.
View Article and Find Full Text PDFA grating-based interferometric cavity produces coherent diffraction light field in a compact size, serving as a promising candidate for displacement measurement by taking advantage of both high integration and high accuracy. Phase-modulated diffraction gratings (PMDGs) make use of a combination of diffractive optical elements, allowing for the diminishment of zeroth-order reflected beams and thus improving the energy utilization coefficient and sensitivity of grating-based displacement measurements. However, conventional PMDGs with submicron-scale features usually require demanding micromachining processes, posing a significant challenge to manufacturability.
View Article and Find Full Text PDFSensors (Basel)
December 2022
There is a constraint between the dynamic range and the bandwidth of MEMS accelerometers. When the input acceleration is comparatively large, the squeeze film damping will increase dramatically with the increase in the oscillation amplitude, resulting in a decrease in bandwidth. Conventional models still lack a complete vibration response analysis in large amplitude ratios and cannot offer a suitable guide in the optimization of such devices.
View Article and Find Full Text PDFHigh-quality denoising of optical interference images usually requires preliminary prediction of the noise level. Although blind denoising can filter the image at the pixel level without noise prediction, it inevitably loses a significant amount of phase information. This paper proposes a fast and high-quality denoising algorithm for optical interference images that combines the merits of a principal component analysis (PCA) and residual neural networks.
View Article and Find Full Text PDFAn interferometric micro-optomechanical accelerometer usually has ultrahigh sensitivity and accuracy. However, cross-axis interference inevitably degrades the performance, including its detection accuracy and output signal contrast. To accurately clarify the influence of cross-axis interference, a modified mechanical-optical theoretical model is established.
View Article and Find Full Text PDFFibrous material with high strength and large stretchability is an essential component of high-performance wearable electronic devices. Wearable electronic systems require a material that is strong to ensure durability and stability, and a wide range of strain to expand their applications. However, it is still challenging to manufacture fibrous materials with simultaneously high mechanical strength and the tensile property.
View Article and Find Full Text PDFSensors (Basel)
January 2022
Squeeze film air damping is a significant factor in the design of MEMS devices owing to its great impact on the dynamic performance of vibrating structures. However, the traditional theoretical results of squeeze film air damping are derived from the Reynolds equation, wherein there exists a deviation from the true results, especially in low aspect ratios. While expensive efforts have been undertaken to prove that this deviation is caused by the neglect of pressure change across the film, a quantitative study has remained elusive.
View Article and Find Full Text PDFMicromachines (Basel)
December 2021
External temperature changes can detrimentally affect the properties of a microaccelerometer, especially for high-precision accelerometers. Temperature control is the fundamental method to reduce the thermal effect on microaccelerometer chips, although high-performance control has remained elusive using the conventional proportional-integral-derivative (PID) control method. This paper proposes a modified approach based on a genetic algorithm and fuzzy PID, which yields a profound improvement compared with the typical PID method.
View Article and Find Full Text PDFJ Am Chem Soc
November 2021
Reducing the lateral scale of two-dimensional (2D) materials to one-dimensional (1D) has attracted substantial research interest not only to achieve competitive electronic applications but also for the exploration of fundamental physical properties. Controllable synthesis of high-quality 1D nanoribbons (NRs) is thus highly desirable and essential for further study. Here, we report the implementation of supervised machine learning (ML) for the chemical vapor deposition (CVD) synthesis of high-quality quasi-1D few-layered WTe NRs.
View Article and Find Full Text PDFMicrosyst Nanoeng
July 2021
Dynamic performance has long been critical for micro-electro-mechanical system (MEMS) devices and is significantly affected by damping. Different structural vibration conditions lead to different damping effects, including border and amplitude effects, which represent the effect of gas flowing around a complicated boundary of a moving plate and the effect of a large vibration amplitude, respectively. Conventional models still lack a complete understanding of damping and cannot offer a reasonably good estimate of the damping coefficient for a case with both effects.
View Article and Find Full Text PDFBandwidth is an important parameter for accelerometers, in some cases, even surpassing sensitivity. However, there are few studies focused on the relationship between bandwidth and environmental conditions in practical application of accelerometers. In this paper, we systematically analyze the influence of environment on the bandwidth of accelerometers, obtaining the amplitude-frequency response curves versus damping ratio and properties of materials, wherein temperature and humidity were found as the two dominant factors that influence the bandwidth of accelerometers.
View Article and Find Full Text PDFThe Micro-Opto-Electro-Mechanical Systems (MOEMS) accelerometer is a new type of accelerometer that combines the merits of optical measurement and Micro-Electro-Mechanical Systems (MEMS) to enable high precision, small volume, and anti-electromagnetism disturbance measurement of acceleration, which makes it a promising candidate for inertial navigation and seismic monitoring. This paper proposes a modified micro-grating-based accelerometer and introduces a new design method to characterize the grating interferometer. A MEMS sensor chip with high sensitivity was designed and fabricated, and the processing circuit was modified.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2021
The cost-efficient and plentiful Na and K resources motivate the research on ideal electrodes for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). Here, MoSe nanosheets perpendicularly anchored on reduced graphene oxide (rGO) are studied as an electrode for SIBs and PIBs. Not only does the graphene network serves as a nucleation substrate for suppressing the agglomeration of MoSe nanosheets to eliminate the electrode fracture but also facilitates the electrochemical kinetics process and provides a buffer zone to tolerate the large strain.
View Article and Find Full Text PDFInterferometric optomechanical accelerometers provide superior resolution, but the application is limited due to the non-ambiguity range that is always less than half of the wavelength, which corresponds to the order of mg. This paper proposes a novel acceleration measurement method based on synthetic wavelength and single wavelength superheterodyne interferometry to address this issue. Two acousto-optical modulators and several polarizers are introduced to the two-wavelength interferometry to create four beams with different frequencies and polarization states, and two ultra-narrow bandwidth filters are used to realize the single wavelength measurement simultaneously.
View Article and Find Full Text PDFOptical coupling between subwavelength grating pairs allows for the precise measurement of lateral or vertical displacement of grating elements and gives rise to different types of displacement and inertial sensors. In this paper, we demonstrate a design for a nano-optomechanical accelerometer based on a subwavelength grating pair that can be easily fabricated by a single Silicon-on-insulator (SOI) chip. The parameters of the subwavelength grating pair-based optical readout, including period, duty cycle, thickness of grating and metal film, and the distance of the air gap, were optimized by combining a genetic algorithm and rigorous coupled wavelength analysis (RCWA) to obtain the optimal sensitivity to the displacement of suspended grating element and the acceleration.
View Article and Find Full Text PDFCross-axis sensitivity of single-axis optomechanical accelerometers, mainly caused by the asymmetric structural design, is an essential issue primarily for high performance applications, which has not been systematically researched. This paper investigates the generating mechanism and detrimental effects of the cross-axis sensitivity of a high resoluion single-axis optomechanical accelerometer, which is composed of a grating-based cavity and an acceleration sensing chip consisting of four crab-shaped cantilevers and a proof mass. The modified design has been proposed and a prototype setup has been built based on the model of cross-axis sensitivity in optomechanical accelerometers.
View Article and Find Full Text PDFThis paper discusses the pulse signal of a highly sensitive lateral deformable optical microelectromechanical systems (MEMS) displacement sensor based on Wood's anomalies and its corresponding tolerance. The optical reflection amplitude of the device changes with the displacement of the nanostructured grating elements. Unexpectedly, the device's original sinusoidal signal develops into a new signal form (i.
View Article and Find Full Text PDF