Ischemic stroke ranks among the leading causes of death and disability in humans and is accompanied by motor and cognitive impairment. However, the precise mechanisms underlying injury after stroke and effective treatment strategies require further investigation. Peroxiredoxin-1 (PRDX1) triggers an extensive inflammatory cascade that plays a pivotal role in the pathology of ischemic stroke, resulting in severe brain damage from activated microglia.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is currently one of the most lethal cancers worldwide. Several basic studies have confirmed that Kirsten rat sarcoma virus (KRAS) is a key driver gene for the occurrence of PDAC, and KRAS mutations have also been found in most patients in clinical studies. In this study, two pan-KRAS inhibitors, BI-2852 and BAY-293, were chosen as chemical probes to investigate their antitumor potency in PDAC.
View Article and Find Full Text PDFPhosphoglycerate mutase 1 (PGAM1) plays a pivotal role in cancer metabolism and tumor progression via its metabolic activity and interaction with other proteins like α-smooth muscle actin (ACTA2). Allosteric regulation is considered to be an innovative strategy to discover a highly selective and potent inhibitor targeting PGAM1. Here, we identified a novel PGAM1 allosteric inhibitor, HKB99, via structure-based optimization.
View Article and Find Full Text PDFThe phosphatidylinositol 3-kinase (PI3K) signaling pathway plays important roles in cell proliferation, growth, and survival. Hyperactivated PI3K is frequently found in a wide variety of human cancers, validating it as a promising target for cancer therapy. We determined the crystal structure of the human PI3Kα-PI103 complex to unravel molecular interactions.
View Article and Find Full Text PDFAim: To investigate the molecular mechanisms underlying the influence of DNA polymerase from different genotypes of hepatitis B virus (HBV) on the binding affinity of adefovir (ADV).
Methods: Computational approaches, including homology modeling, docking, MD simulation and MM/PBSA free energy analyses were used.
Results: Sequence analyses revealed that residue 238 near the binding pocket was not only a polymorphic site but also a genotype-specific site (His238 in genotype B; Asn238 in genotype C).