Background: Alcohol-associated liver disease (ALD) is a major health care challenge worldwide with limited therapeutic options. Although mesenchymal stem/stromal cells (MSCs) represent a newly emerging therapeutic approach to treat ALD, thus far, there have been extensive efforts to try and enhance their efficacy, including genetically engineering MSCs. FGF21, an endocrine stress-responsive hormone, has been shown to regulate energy balance, glucose, and lipid metabolism and to enhance the homing of MSCs toward injured sites.
View Article and Find Full Text PDFBackground & Aims: Treatments directly targeting fibrosis remain limited. Given the unique intrinsic features of macrophages and their capacity to engraft in the liver, we genetically engineered bone marrow-derived macrophages with a chimeric antigen receptor (CAR) to direct their phagocytic activity against hepatic stellate cells (HSCs) in multiple mouse models. This study aimed to demonstrate the therapeutic efficacy of CAR macrophages (CAR-Ms) in mouse models of fibrosis and cirrhosis and to elucidate the underlying mechanisms.
View Article and Find Full Text PDFBackground: Poor neoplastic differentiation contributes to the rapid progression of uterine corpus endometrial carcinoma (UCEC). Thus, it is essential to identify candidate genes, clarifying the carcinogenesis and progression of UCEC.
Methods: We screened genes that affect differentiation and prognosis in UCEC.
Liver disease is a leading cause of mortality and morbidity that is rising globally. Liver dysfunctions are classified into acute and chronic diseases. Various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
October 2023
Background & Aims: Liver fibrosis/cirrhosis is significant health burden worldwide, resulting in liver failure or cancer and accounting for many deaths each year. The pathogenesis of liver fibrosis is very complex, which makes treatment challenging. Growth differentiation factor 15 (GDF15), a cysteine knot protein belonging to the transforming growth factor β (TGF-β) superfamily, has been shown to play a protective role after tissue injury and to promote a negative energy balance during obesity and diabetes.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD), as one of the main causes of chronic liver disease worldwide, encompasses a spectrum of liver conditions that are not caused by other etiology, such as overt alcohol consumption, from simple steatosis to more aggressive non-alcoholic steatohepatitis (NASH) that involves liver inflammation and fibrosis, and to the lethal cirrhosis that may result in liver cancer and liver failure. The molecular mechanisms governing the transition from steatosis to NASH remain not fully understood, but the hepatic lipidome is extensively altered in the setting of steatosis and steatohepatitis, which also correlate with disease progression. With the tremendous advancement in the field of lipidomics in last two decades, a better understanding of the specific role of sphingolipids in fatty liver disease has taken shape.
View Article and Find Full Text PDFBackground: Selenium-binding protein 1 (SELENBP1), a member of the selenium-containing protein family, plays an important role in malignant tumorigenesis and progression. However, it is currently lacking research about relationship between SELENBP1 and immunotherapy in colorectal cancer (CRC).
Methods: We first analyzed the expression levels of SELENBP1 based on the Cancer Genome Atlas (TCGA), Oncomine andUALCAN.