Publications by authors named "Qian'an Fang"

Microbial degradation is considered as an attractive method to eliminate exposure to aflatoxin B1 (AFB1), the most toxic mycotoxin that causes great economic losses and brings a serious threat to human and animal health, in food and feed. In this study, WF2020, isolated from naturally fermented pickles, could effectively degrade AFB1 ranging from 1 to 8 μg/ml, and the optimum temperature and pH value were 37-45°C and 8.0, respectively.

View Article and Find Full Text PDF

Fungal polyketide synthases play important and differential roles in synthesizing secondary metabolites and regulating several cell events, including asexual development, environmental adaptation, and pathogenicity. This study shows the important functions of a highly reducing polyketide synthase, Pks11, in Beauveria bassiana, a filamentous fungal insect pathogen used worldwide for pest biocontrol. The deletion of pks11 led to severe defects in conidial yields on different media and a decrease of 36.

View Article and Find Full Text PDF

Microbial degradation is an effective and attractive method for eliminating aflatoxin B1 (AFB1), which is severely toxic to humans and animals. In this study, RAF106 could effectively degrade AFB1 when cultivated in Sabouraud dextrose broth (SDB) with contents of AFB1 ranging from 0.1 to 4 μg/mL.

View Article and Find Full Text PDF

Small ubiquitin-like modifiers (SUMOs) act as the modifiers that regulate several important eukaryotic cell events during sumoylation, but little is known about the functions of SUMO or sumoylation in filamentous entomopathogens. Here, we report the important roles of a single SUMO-encoding gene, smt3, in Beauveria bassiana, a filamentous fungal insect pathogen that serves as a main source of wide-spectrum fungal insecticides. The deletion of smt3 led to significant growth defects on the minimal media with different carbon and nitrogen sources, an obvious reduction (45.

View Article and Find Full Text PDF

Biotransformation of green tea catechins mediated by microbes and/or enzymes could increase their bioavailability and improve their health benefits, but the regulatory mechanism remains unclear. Here, RAF106 isolated from Pu-erh tea was proved to be capable of degrading gradually ester-catechins into non-ester-catechins with higher bioavailability and gallic acid (GA) in aqueous solution only containing green tea catechins, and the products displayed similar radical-scavenging activity with the control. Meanwhile, the degradation was mediated by inducible enzymes as the extracellular form, and tannase might be an important enzyme among the extracellular enzymes.

View Article and Find Full Text PDF