Publications by authors named "QiFan Yu"

Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases.

View Article and Find Full Text PDF

Background: Osteoarthritis is recognized as a common geriatric condition characterized by irregular chronic pain. Its prevalence is steadily increasing, posing significant challenges to global public health, while some studies indicate a trend towards younger individuals being affected. This condition severely impacts patients' quality of life.

View Article and Find Full Text PDF

Due to the limited self-repair ability of the annulus fibrosus (AF), current tissue engineering strategies tend to use structurally biomimetic scaffolds for AF defect repair. However, the poor integration between implanted scaffolds and tissue severely affects their therapeutic effects. To solve this issue, we prepared a multifunctional scaffold containing loaded lysyl oxidase (LOX) plasmid DNA exosomes and manganese dioxide nanoparticles (MnO NPs).

View Article and Find Full Text PDF

Presently, the clinical treatment of intervertebral disc degeneration (IVDD) remains challenging, but the strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in the nucleus pulposus (NP) has become an effective way to alleviate IVDD. IL-1ra, a natural antagonist against IL-1β, can mitigate inflammation and promote regeneration in IVDD. Chondroitin sulfate (CS), an important component of the NP, can promote ECM synthesis and delay IVDD.

View Article and Find Full Text PDF

The incidence of osteochondral defect is increasing year by year, but there is still no widely accepted method for repairing the defect. Hydrogels loaded with bioactive molecules have provided promising alternatives for in-situ osteochondral regeneration. Kartogenin (KGN) is an effective and steady small molecule with the function of cartilage regeneration and protection which can be further boosted by TGF-β.

View Article and Find Full Text PDF

Soft and continuum robots present the opportunity for extremely large ranges of motion, which can enable dexterous, adaptive, and multimodal locomotion behaviors. However, as the number of degrees of freedom (DOF) of a robot increases, the number of actuators should also increase to achieve the full actuation potential. This presents a dilemma in mobile soft robot design: physical space and power requirements restrict the number and type of actuators available and may ultimately limit the movement capabilities of soft robots with high-DOF appendages.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IVDD) is one of the main causes of low back pain. Although local delivery strategies using biomaterial carriers have shown potential for IVDD treatment, it remains challenging for intervention against multiple adverse contributors by a single delivery platform. In the present work, we propose a new functionalization strategy using vanillin, a natural molecule with anti-inflammatory and antioxidant properties, to develop multifunctional gelatin methacrylate (GelMA) microspheres for local delivery of transforming growth factor β3 (TGFβ3) toward IVDD treatment.

View Article and Find Full Text PDF

Tissue engineering has promising applications in the treatment of intervertebral disc degeneration (IDD). The annulus fibrosus (AF) is critical for maintaining the physiological function of the intervertebral disc (IVD), but the lack of vessels and nutrition in AF makes it difficult to repair. In this study, we used hyaluronan (HA) micro-sol electrospinning and collagen type I (Col-I) self-assembly techniques to fabricate layered biomimetic micro/nanofibrous scaffolds, which released basic fibroblast growth factor (bFGF) to promote AF repair and regeneration after discectomy and endoscopic transforaminal discectomy.

View Article and Find Full Text PDF

The dynamic extracellular matrix (ECM) constantly affects the behaviors of cells. To mimic the dynamics of ECM with controllable stiffness and energy dissipation, this study proposes a strategy in which a small molecule, 3,4-dihydroxybenzaldehyde (DB), was used as fast "dynamic bridges'' to construct viscoelastic gelatin methacryloyl (GelMA)-based hydrogels. The storage modulus and loss modulus of hydrogels were independently adjusted by the covalent crosslinking density and by the number of dynamic bonds.

View Article and Find Full Text PDF

The excessive reactive oxygen species (ROS) level, inflammation, and weak tissue regeneration ability after annulus fibrosus (AF) injury constitute an unfavorable microenvironment for AF repair. AF integrity is crucial for preventing disc herniation after discectomy; however, there is no effective way to repair the AF. Herein, a composite hydrogel integrating properties of antioxidant, anti-inflammation, and recruitment of AF cells is developed through adding mesoporous silica nanoparticles modified by ceria and transforming growth factor β3 (TGF-β3) to the hydrogels.

View Article and Find Full Text PDF

In order to meet the personalized needs of Chinese intelligent vehicles and improve the satisfaction and acceptance of human-computer interaction and collaboration in domestic intelligent vehicles. In this paper, we design an adaptive longitudinal following model that integrates the perceptual perturbation process and driver characteristics for simulating driver following behavior and studying the variability of driver following behavior. Firstly, for the independence and randomness of driver perception process, a set of random variables conforming to Wiener process is introduced to simulate the perception process of speed and following distance of the vehicle in front; secondly, for the characteristic differences of different drivers' following behavior, a driver characteristic parameter identification algorithm is designed to identify the expected collision time distance and following distance parameters of different drivers, and the identified parameters will be used for Again, a sliding mode control system based on fuzzy switching gain adjustment is designed to simulate the driver following control system.

View Article and Find Full Text PDF

Mechanical cues from the extracellular matrix (ECM) microenvironment are known to be significant in modulating the fate of stem cells to guide developmental processes and maintain bodily homeostasis. Tissue engineering has provided a promising approach to the repair or regeneration of damaged tissues. Scaffolds are fundamental in cell-based regenerative therapies.

View Article and Find Full Text PDF

There is an urgent clinical need for the treatment of annulus fibrosus (AF) impairment caused by intervertebral disc (IVD) degeneration or surgical injury. Although repairing injured AF through tissue engineering is promising, the approach is limited by the complicated angle-ply microstructure, inflammatory microenvironment, poor self-repairing ability of AF cells and deficient matrix production. In this study, electrospinning technology is used to construct aligned core-shell nanofibrous scaffolds loaded with transforming growth factor-β3 (TGFβ3) and ibuprofen (IBU), respectively.

View Article and Find Full Text PDF

Tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD). However, implantation of tissue engineered constructs may cause foreign body reaction and aggravate the inflammatory and oxidative microenvironment of the degenerative intervertebral disc (IVD). In order to ameliorate the adverse microenvironment of IDD, in this study, we prepared a biocompatible poly (ether carbonate urethane) urea (PECUU) nanofibrous scaffold loaded with fucoidan, a natural marine bioactive polysaccharide which has great anti-inflammatory and antioxidative functions.

View Article and Find Full Text PDF

Annulus fibrosus (AF) repair remains a challenge because of its limited self-healing ability. Endogenous repair strategies combining scaffolds and growth factors show great promise in AF repair. Although the unique and beneficial characteristics of decellularized extracellular matrix (ECM) in tissue repair have been demonstrated, the poor mechanical property of ECM hydrogels largely hinders their applications in tissue regeneration.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of p53, a critical gene for protecting the genome, in the freshwater red-eared slider turtle when exposed to varying levels of salinity in their environment.
  • Researchers found that p53's amino acid sequence in this turtle is similar to that of other species, with changes in its expression observed in different tissues under normal and salinity stress conditions.
  • Results showed that under salinity stress, p53 mRNA levels significantly increased in the liver and heart, indicating that the turtle may regulate cell cycle and apoptosis as a strategy to adapt to salinity changes.
View Article and Find Full Text PDF