Publications by authors named "Qi-xian Rong"

Deep learning (DL) could predict isocitrate dehydrogenase (IDH) mutation status from MRIs. Yet, previous work focused on CNNs with refined tumor segmentation. To bridge the gap, this study aimed to evaluate the feasibility of developing a Transformer-based network to predict the IDH mutation status free of refined tumor segmentation.

View Article and Find Full Text PDF

Amorphous solid dispersions (ASD) are one of most commonly used supersaturating drug delivery systems (SDDS) to formulate insoluble active pharmaceutical ingredients. However, the development of polymer-guided stabilization of ASD systems faces many obstacles. To overcome these shortcomings, co-amorphous supersaturable formulations have emerged as an alternative formulation strategy for poorly soluble compounds.

View Article and Find Full Text PDF

This study aimed to explore the link between block copolymers' interfacial properties and nanoscale carrier formation and found out the influence of length ratio on these characters to optimize drug delivery system. A library of diblock copolymers of PEG-PCL and triblock copolymers with additional PEI (PEG-PCL-PEI) were synthesized. Subsequently, a systematic isothermal investigation was performed to explore molecular arrangements of copolymers at air/water interface.

View Article and Find Full Text PDF

Many strategies have been employed to improve oral drug delivery. One such approach involves the use of supersaturable delivery systems such as amorphous self-micellizing solid dispersions (SmSDs). SmSDs have attracted more attention recently, but little is known regarding the impact of production methods on profiles and internal mechanisms of final SmSDs in spite of its importance.

View Article and Find Full Text PDF

The collective impact of cellulosic polymers on the dissolution, solubility, and crystallization inhibition of amorphous active pharmaceutical ingredients (APIs) is still far from being adequately understood. The goal of this research was to explore the influence of cellulosic polymers and incubation conditions on enhancement of solubility and dissolution of amorphous felodipine, while inhibiting crystallization of the drug from a supersaturated state. Variables, including cellulosic polymer type, amount, ionic strength, and viscosity, were evaluated for effects on API dissolution/solubility and crystallization processes.

View Article and Find Full Text PDF

Nanomedicines are often designed to target and treat solid tumors. Unfortunately, tumor and stroma composed of dense extracellular matrix, abnormal vascular barriers, elevated interstitial fluid pressure, et al., which impede the access and accumulation of nanomedicines into tumors.

View Article and Find Full Text PDF

Background: Abnormal expression of stromal cells and extracellular matrix in tumor stroma creates a tight barrier, leading to insufficient extravasation and penetration of therapeutic agents. Cancer-associated fibroblasts (CAFs) take on pivotal roles encouraging tumor progression.

Method: To surmount the refractoriness of stroma, we constructed a multi-targeting combined scenario of anti-CAFs agent tranilast and antitumor agent docetaxel micelles (DTX-Ms).

View Article and Find Full Text PDF

Introduction: Acceleration and improvement of penetration across cell-membrane interfaces of active targeted nanotherapeutics into tumor cells would improve tumor-therapy efficacy by overcoming the issue of poor drug penetration. Cell-penetrating peptides, especially synthetic polyarginine, have shown promise in facilitating cargo delivery. However, it is unknown whether polyarginine can work to overcome the membrane interface in an inserted pattern for cyclic peptide ligand-mediated active targeting drug delivery.

View Article and Find Full Text PDF

The CD44 protein, as a predominant receptor for hyaluronan (HA), is highly expressed on the surface of multiple tumor cells. HA, as a targeting molecule for a CD44-contained delivery system, increases intracellular drug concentration in tumor tissue. However, due to the weak binding ability of hyaluronan oligosaccharide to CD44, targeting for tumor drug delivery has been restricted.

View Article and Find Full Text PDF
Article Synopsis
  • * The study introduces an "intelligent peptide-gathering mechanical arm" (Int PMA) to enhance the selectivity of R-liposome-based drug delivery, utilizing specific peptides for tumor targeting and release based on tumor microenvironmental cues.
  • * Experimental results show that the design allows for controlled cargo release in response to tumor-related enzymes, with successful in vitro and in vivo performance, demonstrating promise for targeted cancer therapies.
View Article and Find Full Text PDF

Geranylgeranyl pyrophosphate synthase enzyme is one of the key enzymes in the synthesis pathway of diterpenoid. Nine Lamiaceae genus GGPS synthase in Genebank was analyzed in this article. GGPS synthase the nucleic acid sequences and amino acid sequences, physicochemical properties, the signal peptide, leader peptides, transmembrane topological structure, hydrophobic, hydrophilic, subcellular localization, secondary structure, function domain, tertiary structure and evolutional relationship were predicted by using bioinformatics methods.

View Article and Find Full Text PDF

The goal of this work was to compare fenofibrate (FEN)-containing self-micellizing solid dispersion (SmSD) and non-self-micellizing solid dispersion (NsSD) systems. Exploration of underlying mechanisms to improve FEN dissolution/solubility profiles was conducted to understand the enhanced therapeutic potential. SmSD and NsSD of FEN systems (SmSD/FEN and NsSD/FEN) were fabricated using a fuse-quench cooling method.

View Article and Find Full Text PDF

Metastasis of cancer makes up the vast majority of cancer-related deaths, and it usually initiates from tumor cells invasiveness and develops through tumor neovasculature. In this work, we have fabricated a CD44/neuropilin dual receptor-targeting nanoparticulate system (tLyP-1-HT NPs) with endogenous or FDA approved components for treating metastatic triple negative breast cancer (TNBC). The enhanced specific targeting of tLyP-1-HT NPs to both metastatic tumor cells and metastasis-supporting tumor neovasculature was contributed by means of CD44/neuropilin dual receptor-mediated interaction.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common and deadly brain cancer, characterized by its aggressive proliferation to adjacent tissue and high recurrence rate. We studied the efficacy and related mechanisms of the combination of cyclopamine (Cyp, a Sonic-hedgehog pathway (Shh) inhibitor) and temozolomide (TMZ, the clinically most used chemotherapeutic agent) in anti-GBM treatment. The micellarized Cyp (MCyp) showed better performance than Cyp solution in inhibiting GBM cells proliferation (3.

View Article and Find Full Text PDF

As a potent therapeutic agent, small interfering RNA (siRNA) has been exploited to silence critical genes involved in tumor initiation and progression. However, development of a desirable delivery system is required to overcome the unfavorable properties of siRNA such as its high degradability, molecular size, and negative charge to help increase its accumulation in tumor tissues and promote efficient cellular uptake and endosomal/lysosomal escape of the nucleic acids. In this study, we developed a new activatable cell-penetrating peptide (ACPP) that is responsive to an acidic tumor microenvironment, which was then used to modify the surfaces of siRNA-loaded liposomes.

View Article and Find Full Text PDF

Cell-penetrating peptide (CPP), also called "Trojan Horse" peptide, has become a successful approach to deliver various payloads into cells for achieving the intracellular access. However, the "Trojan Horse" peptide is too wild, not just to "Troy", but rather widely distributed in the body. Thus, there is an urgent need to tame the wildness of "Trojan Horse" peptide for targeted delivery of antineoplastic agents to the tumor site.

View Article and Find Full Text PDF

For aggressive brain glioblastoma, the therapy is significantly impaired by blood-brain barrier (BBB) and blood-tumor barrier (BTB). Choosing more than one target from the pool of tumor-stroma interactions is profoundly beneficial to therapeutic approaches. Thus, a multifunctional liposomal system based on anchoring two receptor-specific and penetrable peptides was designed for the combination delivery of BBB-impermeable siRNA and chemotherapeutic docetaxel to brain glioblastoma.

View Article and Find Full Text PDF

Polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, or Soluplus, is a relatively new copolymer and a promising carrier of amorphous solid dispersions. Knowledge on the inherent properties of Soluplus (e.g.

View Article and Find Full Text PDF

Low density lipoprotein (LDL), which is a principal carrier for the delivery of cholesterol, has been used as a great candidate for the delivery of drugs to tumor based on the great requirements for cholesterol of many cancer cells. Mimicking the structure and composition of LDL, we designed a synthetic low-density lipoprotein (sLDL) to encapsulate paclitaxel-alpha linolenic acid (PALA) for tumor therapy. The PALA loaded sLDL (PALA-sLDL) and PALA-loaded microemulsion (PALA-ME, without the binding domain for LDLR) displayed uniform sizes with high drug loading efficiency (> 90%).

View Article and Find Full Text PDF

Cell-penetrating peptides are composed of positively-charged amino acids that can mediate molecules or nano-carriers across cell membranes. However, most of the known cell-penetrating peptides have no cell- or tissue-specificity, with affinity to almost all types of cells in internalization. The non-specificity of cell-penetrating peptides is a significant obstacle in the application to targeted delivery of imaging probes and therapeutic agents.

View Article and Find Full Text PDF

This study aims to explore the characteristics of crystallization inhibition by cellulose polymers at the supersaturated states of drugs. The study was performed by simulating supersaturated process and preparing supersaturated drug solid, and was carried out by measuring the content of drugs at different time points using dissolution apparatus. The types, amounts, ionic intensity and viscosity of cellulose polymers were examined to assess the crystallization inhibition effect on BCS II class drug indomethacin.

View Article and Find Full Text PDF

Secondary metabolites from plants play key roles in human medicine and chemical industries. Due to limited accumulation of secondary metabolites in plants and their important roles, characterization of key enzymes involved in biosynthetic pathway will enable metabolic engineering or synthetic biology to improve or produce the compounds in plants or microorganisms, which provides an alternative for production of these valuable compounds. Salvia miltiorrhiza, containing tanshinones and phenolic acids as its active compounds, has been widely used for the treatment of cardiovascular and cerebrovascular diseases.

View Article and Find Full Text PDF

Poor site-specific delivery and incapable deep-penetration into tumor are the intrinsic limitations to successful chemotherapy. Here, the tumor-homing penetrating peptide tLyP-1-functionalized nanoparticles (tLPTS/HATS NPs), composed of two modularized amphiphilic conjugates of tLyP-1-PEG-TOS (tLPTS) and TOS-grafted hyaluronic acid (HATS), had been fabricated for tumor-targeted delivery of docetaxel (DTX). The prepared tLPTS/HATS NPs had about 110 nm in mean diameter, high drug encapsulation efficiency (93%), and sustained drug release behavior.

View Article and Find Full Text PDF

According to the designed specific primers of gene fragment based on the Salvia miltiorrhiza transcriptome data, a full-length cDNA sequence of SQS2 from S. miltiorrhiza f. alba was cloned by the method of reverse transcription polymerase chain reaction (RT-PCR).

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) offer a non-selective and receptor-independent mode to promote cellular uptake. Although the non-specificity of CPP-mediated internalization allows this approach applicable to a wide range of tumor types potentially, their universality is a significant obstacle to their clinical utility for targeted delivery of cancer therapeutics and imaging agents. Accordingly, many reports have focused on selective switching of systemically delivered inert CPPs into their active form in lesions (tumor).

View Article and Find Full Text PDF