Hard carbon has been widely used in anode of lithium/sodium ion battery, electrode of supercapacitor, and carbon molecular sieve for CO capture and hydrogen storage. In this study the lignin derived hard carbon products are investigated, and the conclusions are abstracted as follows. (1) The lignin derived hard carbon products consist of microcrystal units of sp graphene fragments, jointed by sp carbon atoms and forming sp-sp hybrid hard carbon family.
View Article and Find Full Text PDFMicrocrystal cellulose (MCC) is a green and sustainable resource that widely exists in various lignocellulose species in percentage 10% to 30%. The fine powder of MCC is often discarded in industrial productions that use lignocellulose as feedstock. The crystal structure of two types of MCC (sugarcane pith and bamboo pith) and their derived carbon materials are studied, and the key findings are summarized as follows.
View Article and Find Full Text PDFBackground: The relationship between protein structure and its bioactivity is one of the fundamental problems for protein engineering and pharmaceutical design.
Method: A new method, called SPTD (Simulated Protein Thermal Detection), was proposed for studying and improving the thermal stability of enzymes. The method was based on the evidence observed by conducting the MD (Molecular Dynamics) simulation for all the atoms of an enzyme vibrating from the velocity at a room temperature (e.
Acetoin is an important platform chemical with a variety of applications in foods, cosmetics, chemical synthesis, and especially in the asymmetric synthesis of optically active pharmaceuticals. It is also a useful breath biomarker for early lung cancer diagnosis. In order to enhance production of optical ()-acetoin and facilitate this building block for a series of chiral pharmaceuticals derivatives, we have developed a systematic approach using -NADH regeneration systems and promising diacetyl reductase.
View Article and Find Full Text PDFGraphene microcrystal (GMC) is a type of glassy carbon fabricated from lignin, in which the microcrystals of graphene are chemically bonded by sp³ carbon atoms, forming a glass-like microcrystal structure. The lignin is refined from sugarcane bagasse using an ethanol-based organosolv technique which is used for the fabrication of GMC by two technical schemes: The pyrolysis reaction of lignin in a tubular furnace at atmospheric pressure; and the hydrothermal carbonization (HTC) of lignin at lower temperature, followed by pyrolysis at higher temperature. The existence of graphene nanofragments in GMC is proven by Raman spectra and XRD patterns; the ratio of sp² carbon atoms to sp³ carbon atoms is demonstrated by XPS spectra; and the microcrystal structure is observed in the high-resolution transmission electron microscope (HRTEM) images.
View Article and Find Full Text PDFSugarcane bagasse was refined into cellulose, hemicellulose, and lignin using an ethanol-based organosolv technique. The hydrothermal carbonization (HTC) reactions were applied for bagasse and its two components cellulose and lignin. Based on GC-MS analysis, 32 (13+19) organic byproducts were derived from cellulose and lignin, more than the 22 byproducts from bagasse.
View Article and Find Full Text PDFA two-level principal component predictor (2L-PCA) was proposed based on the principal component analysis (PCA) approach. It can be used to quantitatively analyze various compounds and peptides about their functions or potentials to become useful drugs. One level is for dealing with the physicochemical properties of drug molecules, while the other level is for dealing with their structural fragments.
View Article and Find Full Text PDF(2R,3R)-2,3-Butanediol has many industrial applications, such as it is used as an antifreeze agent and low freezing point fuel. In addition, it is particularly important to provide chiral groups in drugs. In recent years, this valuable bio-based chemical has attracted increasing attention, and significant progress has been made in the development of microbial cell factories for (2R,3R)-2,3-butanediol production.
View Article and Find Full Text PDFAn interesting possibility is explored: storing the mixture of oxygen and hydrogen in clathrate hydrate in molar ratio 1:2. The interaction energies between oxygen, hydrogen, and clathrate hydrate are calculated using high level quantum chemical methods. The useful conclusion points from this study are summarized as follows.
View Article and Find Full Text PDFA method, so called "active hydrogen bond network" (AHBN), is proposed for site-directed mutations of hydrolytic enzymes. In an enzyme the AHBN consists of the active residues, functional residues, and conservative water molecules, which are connected by hydrogen bonds, forming a three dimensional network. In the catalysis hydrolytic reactions of hydrolytic enzymes AHBN is responsible for the transportation of protons and water molecules, and maintaining the active and dynamic structures of enzymes.
View Article and Find Full Text PDFA new two-dimensional (2D) carbon crystal, different from graphene, has been prepared from 1,3,5-trihydroxybenzene, consisting of 4-carbon and 6-carbon rings in 1:1 ratio, named 4-6 carbophene by authors, in which all carbon atoms possess sp hybrid orbitals with some distortion, forming an extensive conjugated π-bonding planar structure. The angles between the three σ-bonds of the carbon sp orbitals are roughly 120°, 90°, and 150°. Each of the three non-adjacent sides of a 6C-ring is shared with a 4C-ring; and each of the two opposite sides of a 4C-ring is shared with a 6C-ring.
View Article and Find Full Text PDFObjectives: Three strong interactions between amino acid side chains (salt bridge, cation-π, and amide bridge) are studied that are stronger than (or comparable to) the common hydrogen bond interactions, and play important roles in protein-protein interactions.
Methods: Quantum chemical methods MP2 and CCSD(T) are used in calculations of interaction energies and structural optimizations.
Results: The energies of three types of amino acid side chain interactions in gaseous phase and in aqueous solutions are calculated using high level quantum chemical methods and basis sets.
Due to the low toxicity, easy synthesis, rapid elimination, and less side effect, more and more peptide inhibitors are emerging as the effective drugs that are clinically used in therapies of a number of diseases. At the same time the computer-aided drug design (CADD) methods have remarkably developed. In this mini review the newly developed peptide inhibitors and drugs are introduced, including peptide vaccines for cancers, peptide inhibitors for HIV, Alzheimer's disease and related diseases, and the peptides as the leading compounds of drugs.
View Article and Find Full Text PDFPaenibacillus polymyxa DSM 365, an efficient producer of (R,R)-2,3-butanediol, is known to show the highest production titer and productivity reported to date. Here, the first draft genome sequence of this promising strain may provide the genetic basis for further insights into the molecular mechanisms underlying the production of (R,R)-2,3-butanediol with high optical purity and at a high titer. It will also facilitate the design of rational strategies for further strain improvements, as well as construction of artificial biosynthetic pathways through synthetic biology for asymmetric synthesis of chiral 2,3-butanediol or acetoin in common microbial hosts.
View Article and Find Full Text PDFWe present here the first genome sequence of a species in the genus Tumebacillus. The draft genome sequence of Tumebacillus flagellatus GST4 provides a genetic basis for future studies addressing the origins, evolution, and ecological role of Tumebacillus organisms, as well as a source of acid-resistant amylase-encoding genes for further studies.
View Article and Find Full Text PDFAlthough not being classified as the most fundamental protein structural elements like α-helices and β-strands, the loop segment may play considerable roles for protein stability, flexibility, and dynamic activity. Meanwhile, the protein loop is also quite elusive; i.e.
View Article and Find Full Text PDFBackground: The recently solved solution structure of HCV (hepatitis C virus) p7 ion channel provides a solid structure basis for drug design against HCV infection. In the p7 channel the ligand amantadine (or rimantadine) was determined in a hydrophobic pocket. However the pharmocophore (-NH2) of the ligand was not assigned a specific binding site.
View Article and Find Full Text PDFBackground: In the study of biomolecular structures and interactions the polar hydrogen-π bonds (Hp-π) are an extensive molecular interaction type. In proteins 11 of 20 natural amino acids and in DNA (or RNA) all four nucleic acids are involved in this type interaction.
Results: The Hp-π in proteins are studied using high level QM method CCSD/6-311 + G(d,p) + H-Bq (ghost hydrogen basis functions) in vacuum and in solutions (water, acetonitrile, and cyclohexane).
In drug design and enzyme engineering, the information of interactions between receptors and ligands is crucially important. In many cases, the protein structures and drug-target complex structures are determined by a delicate balance of several weak molecular interaction types. Among these interaction forces several unconventional interactions play important roles, however, less familiar for researchers.
View Article and Find Full Text PDFBackground: Among the 20 natural amino acids histidine is the most active and versatile member that plays the multiple roles in protein interactions, often the key residue in enzyme catalytic reactions. A theoretical and comprehensive study on the structural features and interaction properties of histidine is certainly helpful.
Results: Four interaction types of histidine are quantitatively calculated, including: (1) Cation-π interactions, in which the histidine acts as the aromatic π-motif in neutral form (His), or plays the cation role in protonated form (His+); (2) π-π stacking interactions between histidine and other aromatic amino acids; (3) Hydrogen-π interactions between histidine and other aromatic amino acids; (4) Coordinate interactions between histidine and metallic cations.
Expert Opin Drug Discov
June 2011
Introduction: The 2009-H1N1 influenza pandemic has prompted new global efforts to develop new drugs and drug design techniques to combat influenza viruses. While there have been a number of attempts to provide drugs to treat influenza, drug resistance has been a major problem with only four drugs currently approved by the FDA for its treatment.
Areas Covered: In this review, the drug-resistant problem of influenza A viruses is discussed and summarized.
The inhibitions of enzymes (proteins) are determined by the binding interactions between ligands and targeting proteins. However, traditional QSAR (quantitative structure-activity relationship) is a one-side technique, only considering the structures and physicochemical properties of inhibitors. In this study, the structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) is presented, in which the structural information of host protein is involved in the QSAR calculations.
View Article and Find Full Text PDFThe cation-π interactions occur frequently within or between proteins due to six (Phe, Tyr, Trp, Arg, Lys, and His) of the twenty natural amino acids potentially interacting with metallic cations via these interactions. In this study, quantum chemical calculations and molecular orbital (MO) theory are used to study the energies and properties of cation-π interactions in biological structures. The cation-π interactions of H⁺ and Li⁺ are similar to hydrogen bonds and lithium bonds, respectively, in which the small, naked cations H⁺ and Li⁺ are buried deep within the π-electron density of aromatic molecules, forming stable cation-π bonds that are much stronger than the cation-π interactions of other alkali metal cations.
View Article and Find Full Text PDFFor quite a long period of time in history, many intense efforts have been made to determine the 3D (three-dimensional) structure of the M2 proton channel. The reason why the M2 proton channel has attracted so many attentions is because (1) it is the key for really understanding the life cycle of influenza viruses, and (2) it is indispensable for conducting rational drug design against the flu viruses. Recently, the long-sough 3D structures of the M2 proton channels for both influenza A and B viruses were consecutively successfully determined by the high-resolution NMR spectroscopy (Schnell J.
View Article and Find Full Text PDF