Owing to the presence of exceptional points (EPs), non-Hermitian (NH) systems can display intriguing topological phenomena without Hermitian analogs. However, experimental characterizations of exceptional topological invariants have been restricted to second-order EPs (EP2s) in classical or semiclassical systems. We here propose an NH multi-mode system with higher-order EPs, each of which is underlain by a multifold-degenerate multipartite entangled eigenstate.
View Article and Find Full Text PDFWe propose a scheme for chirality discrimination via a topological invariant. The physical model is based on a three-level subspace of a molecule. By modulating the components of the control field with proper frequencies, two different two-level effective Hamiltonians are derived for the left-handed and the right-handed molecules.
View Article and Find Full Text PDFLong-distance transmission between spatially separated microwave cavities is a crucial area of quantum information science and technology. In this work, we present a method for achieving long-distance transmission of arbitrary quantum states between two microwave cavities, by using a hybrid system that comprises two microwave cavities, two nitrogen-vacancy center ensembles (NV ensembles), two optical cavities, and an optical fiber. Each NV ensemble serves as a quantum transducer, dispersively coupling with a microwave cavity and an optical cavity, which enables the conversion of quantum states between a microwave cavity and an optical cavity.
View Article and Find Full Text PDFGrover's search algorithm is a well-known quantum algorithm that has been extensively studied and improved to increase its success rate and enhance its flexibility. However, most improved search algorithms require an adjustment of the oracle, which may not be feasible in practical problem-solving scenarios. In this work, we report an experimental demonstration of a deterministic quantum search for multiple marked states without adjusting the oracle.
View Article and Find Full Text PDFCertifying quantum measurements is increasingly important for foundational insights in quantum information science. Here, we report an experimental certification of unknown quantum measurements in a semi-device-independent setting. For the first time, we experimentally demonstrate that genuine three-outcome positive operator-valued measures (POVMs) can be certified under the assumption of a limited overlap between the prepared quantum states.
View Article and Find Full Text PDFW-type optical entangled coherent states have important applications in quantum communication. Previous works require performing measurement in the preparation of such W states. We here propose an efficient scheme for creating a W-type optical entangled coherent state without measurement.
View Article and Find Full Text PDFA qudit (d-level quantum system) has a large Hilbert space and thus can be used to achieve many quantum information and communication tasks. Here, we propose a method to transfer arbitrary d-dimensional quantum states (known or unknown) between two superconducting transmon qudits coupled to a single cavity. The state transfer can be performed by employing resonant interactions only.
View Article and Find Full Text PDFW-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution.
View Article and Find Full Text PDFCavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP.
View Article and Find Full Text PDFCompared with a qubit, a qutrit (i.e., three-level quantum system) has a larger Hilbert space and thus can be used to encode more information in quantum information processing and communication.
View Article and Find Full Text PDFWe propose a simple method for achieving a multiqubit phase gate of one qubit simultaneously controlling n target qubits, by using three-level quantum systems (i.e., qutrits) coupled to a cavity or resonator.
View Article and Find Full Text PDFThe generation, manipulation and fundamental understanding of entanglement lies at very heart of quantum mechanics. Among various types of entangled states, the NOON states are a kind of special quantum entangled states with two orthogonal component states in maximal superposition, which have a wide range of potential applications in quantum communication and quantum information processing. Here, we propose a fast and simple scheme for generating NOON states of photons in two superconducting resonators by using a single superconducting transmon qutrit.
View Article and Find Full Text PDF