Publications by authors named "Qi-Jun Sun"

Metal-organic frameworks (MOFs) have attained broad research attention in the areas of sensors, resistive memories, and optoelectronic synapses on the merits of their intriguing physical and chemical properties. In this review, recent progress on the synthesis of MOFs and their electronic applications is introduced and discussed. Initially, the crystal structures and properties of MOFs encompassing optical, electrical, and chemical properties are discussed in brief.

View Article and Find Full Text PDF

Over the past decades, tactile sensing technology has made significant advances in the fields of health monitoring and robotics. Compared to conventional sensors, self-powered tactile sensors do not require an external power source to drive, which makes the entire system more flexible and lightweight. Therefore, they are excellent candidates for mimicking the tactile perception functions for wearable health monitoring and ideal electronic skin (e-skin) for intelligent robots.

View Article and Find Full Text PDF

With the arrival of the Internet of Things era, the demand for tactile sensors continues to grow. However, traditional sensors mostly require an external power supply to meet real-time monitoring, which brings many drawbacks such as short service life, environmental pollution, and difficulty in replacement, which greatly limits their practical applications. Therefore, the development of a passive self-power supply of tactile sensors has become a research hotspot in academia and the industry.

View Article and Find Full Text PDF

Today's computing systems, to meet the enormous demands of information processing, have driven the development of brain-inspired neuromorphic systems. However, there are relatively few optoelectronic devices in most brain-inspired neuromorphic systems that can simultaneously regulate the conductivity through both optical and electrical signals. In this work, the Au/MXene/Y:HfO/FTO ferroelectric memristor as an optoelectronic artificial synaptic device exhibited both digital and analog resistance switching (RS) behaviors under different voltages with a good switching ratio (>10).

View Article and Find Full Text PDF

The research found that after doping with rare earth elements, a large number of electrons and holes will be produced on the surface of AlN, which makes the material have the characteristics of spontaneous polarization. A new type of ferroelectric material has made a new breakthrough in the application of nitride-materials in the field of integrated devices. In this paper, the application prospects and development trends of ferroelectric material ScAlN in memristors are reviewed.

View Article and Find Full Text PDF

Antibiotics play an essential role in the treatment of various diseases. However, the overuse of antibiotics has led to the pollution of water bodies and food safety, affecting human health. Herein, we report a dual-emission MOF-based flexible sensor for the detection of antibiotics in water, which was prepared by first encapsulating rhodamine B (RhB) by a zeolite imidazolium ester skeleton (ZIF-8) and then blending it with polyvinylidene difluoride (PVDF).

View Article and Find Full Text PDF

In recent years, extensive research has been conducted on the development of high-performance flexible tactile sensors, pursuing the next generation of highly intelligent electronics with diverse potential applications in self-powered wearable sensors, human-machine interactions, electronic skin, and soft robotics. Among the most promising materials that have emerged in this context are functional polymer composites (FPCs), which exhibit exceptional mechanical and electrical properties, enabling them to be excellent candidates for tactile sensors. Herein, this review provides a comprehensive overview of recent advances in FPCs-based tactile sensors, including the fundamental principle, the necessary property parameter, the unique device structure, and the fabrication process of different types of tactile sensors.

View Article and Find Full Text PDF

Flexible tactile sensors with high sensitivity, a broad pressure detection range, and high resolution are highly desired for the applications of health monitoring, robots, and the human-machine interface. However, it is still challenging to realize a tactile sensor with high sensitivity and resolution over a wide detection range. Herein, to solve the abovementioned problem, we demonstrate a universal route to develop a highly sensitive tactile sensor with high resolution and a wide pressure range.

View Article and Find Full Text PDF

Pressure sensors show significant potential applications in health monitoring, bio-sensing, electronic skin, and tactile perception. Consequently, tremendous research interest has been devoted to the development of high-performance pressure sensors. In this paper, recent progress on the polymer composite-based flexible pressure sensor is reviewed.

View Article and Find Full Text PDF

Due to their potential applications in physiological monitoring, diagnosis, human prosthetics, haptic perception, and human-machine interaction, flexible tactile sensors have attracted wide research interest in recent years. Thanks to the advances in material engineering, high performance flexible tactile sensors have been obtained. Among the representative pressure sensing materials, 2D layered nanomaterials have many properties that are superior to those of bulk nanomaterials and are more suitable for high performance flexible sensors.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have focused on developing triboelectric nanogenerators (TENGs) to address power supply challenges for electronic devices, recognizing their promising applications and effective properties.
  • A new TENG has been created using a composite of BaTiO (BTO) and polydimethylsiloxane (PDMS), achieving optimal performance at a 40% BTO to PDMS ratio, and demonstrating its potential as a self-powered touch sensor for controlling LED lights.
  • The study also highlights previously overlooked issues in TENG research and introduces solutions like a signal processing method, laying groundwork for future work in improving TENG performance and applications in areas like wearable tech and the Internet of Things.
View Article and Find Full Text PDF

Flexible sensors are the essential foundations of pressure sensing, microcomputer sensing systems, and wearable devices. The flexible tactile sensor can sense stimuli by converting external forces into electrical signals. The electrical signals are transmitted to a computer processing system for analysis, realizing real-time health monitoring and human motion detection.

View Article and Find Full Text PDF

Adhesion between flexible devices and skin surface facilitates portability of devices and reliable signal acquisition from human body, which is essential for medical therapy devices or monitoring systems. Here, we utilize a simple, cost-effective, and scalable layer-by-layer dip-coating method to fabricate a skin-adhesive multifunctional textile-based device, consisting of three parts: low-cost and easily available airlaid paper (AP) substrate, conductive MXene sensitive layer, and adhesive polydimethylsiloxane (PDMS). The adhesive layer of lightly cross-linked PDMS enables the device to form conformal contact with skin even during human joint bending.

View Article and Find Full Text PDF

Histamine, which is a naturally occurring chemical in seafood, is known to cause undesirable inflammatory response when consumed in large amounts. Histamine is produced in unsafe amounts in colored seafood when improperly stored for just a few hours. Food and health regulatory bodies across the world have guidelines limiting the amount of histamine in fresh as well as processed seafood.

View Article and Find Full Text PDF

Flexible piezoresistive pressure sensors obtain global research interest owing to their potential applications in healthcare, human-robot interaction, and artificial nerves. However, an additional power supply is usually required to drive the sensors, which results in increased complexity of the pressure sensing system. Despite the great efforts in pursuing self-powered pressure sensors, most of the self-powered devices can merely detect the dynamic pressure and the reliable static pressure detection is still challenging.

View Article and Find Full Text PDF

On-site monitoring of heavy metals in drinking water has become crucial because of several high profile instances of contamination. Presently, reliable techniques for trace level heavy metal detection are mostly laboratory based, while the detection limits of contemporary field-based methods are barely meeting the exposure limits set by regulatory bodies such as the World Health Organization (WHO). Here, we show an on-site deployable, Pb sensor on a dual-gated transistor platform whose lower detection limit is 2 orders of magnitude better than the traditional sensor and 1 order of magnitude lower than the exposure limit set by WHO.

View Article and Find Full Text PDF

Piezoresistive microsensors are considered to be essential components of the future wearable electronic devices. However, the expensive cost, complex fabrication technology, poor stability, and low yield have limited their developments for practical applications. Here, we present a cost-effective, relatively simple, and high-yield fabrication approach to construct highly sensitive and ultrastable piezoresistive sensors using a bioinspired hierarchically structured graphite/polydimethylsiloxane composite as the active layer.

View Article and Find Full Text PDF

For following the trend of miniaturization as per Moore's law, increasing efforts have been made to develop single devices with versatile functionalities for Internet of Things (IoT). In this work, organic optical memory devices with excellent dual optoelectronic functionality including light sensing and data storage have been proposed. The Au@Ag core-shell nanorods (NRs)-based memory device exhibits large memory window up to 19.

View Article and Find Full Text PDF

Previous investigations on rare-earth oxides (REOs) reveal their high possibility as dielectric films in electronic devices, while complicated physical methods impede their developments and applications. Herein, we report a facile route to fabricate 16 REOs thin insulating films through a general solution process and their applications in low-voltage thin-film transistors as dielectrics. The formation and properties of REOs thin films are analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), spectroscopic ellipsometry, water contact angle measurement, X-ray photoemission spectroscopy (XPS), and electrical characterizations, respectively.

View Article and Find Full Text PDF

Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped.

View Article and Find Full Text PDF

Graphene-supported bimetallic nanoparticles are promising nanocatalysts, which can show strong and tunable catalytic activity and selectivity. Herein room-temperature-ionic-liquid-assisted metal sputtering is utilized to synthesize PdAu bimetallic nanoparticles on graphene with bare surface, small size, high surface density and controlled Pd-to-Au ratio. This controllable synthetic approach is green-chemistry compatible and totally free of additives and byproducts.

View Article and Find Full Text PDF

High-quality and wafer-scale graphene on insulating gate dielectrics is a prerequisite for graphene electronic applications. For such applications, graphene is typically synthesized and then transferred to a desirable substrate for subsequent device processing. Direct production of graphene on substrates without transfer is highly desirable for simplified device processing.

View Article and Find Full Text PDF

Intrinsic Ge nanowires (NWs) with a Ge core covered by a thick Ge oxide shell are utilized to achieve nanoscale field-effect transistor nonvolatile memories, which show a large memory window and a high ON/OFF ratio with good retention. The retainable surface charge trapping is considered to be responsible for the memory effect, and the Ge oxide shell plays a key role as the insulating tunneling dielectric which must be thick enough to prevent stored surface charges from leaking out. Annealing the device in air is demonstrated to be a simple and effective way to attain thick Ge oxide on the Ge NW surface, and the Ge-NW-based memory corresponding to thick Ge oxide exhibits a much better retention capability compared with the case of thin Ge oxide.

View Article and Find Full Text PDF

A one-pot universal approach with simple metal sputtering onto room temperature ionic liquids has been developed to prepare bimetal-nanoparticle (NP)-graphene hybrids, and the process is environmentally friendly and completely free of additives and byproducts. The graphene-supported bimetallic NPs have an Ag-based core and an Au/Pd-rich shell, demonstrated by the scanning transmission electron microscopy. The X-ray absorption near-edge spectroscopy using synchrotron radiation reveals the occurrence of charge redistribution at both the Ag@Au and Ag@Pd core-shell interfaces.

View Article and Find Full Text PDF

Many low density lipoprotein (LDL) apheresis systems have been applied to patients with hyperlipidemia, but these systems usually work on the basis of complicated equipment and the cost of treatment is expensive. In order to achieve effective treatment of hyperlipidemia at a lower cost, we developed a new LDL apheresis system with dextran sulfate (LAS-DS). In this study, 50 patients with hyperlipidemia were treated 120 times with the new LAS-DS.

View Article and Find Full Text PDF