Publications by authors named "Qi-En Wang"

High-grade serous ovarian cancer (HGSOC), the most lethal epithelial ovarian cancer subtype, faces persistent challenges despite advances in the therapeutic use of PARP inhibitors. Thus, innovative strategies are urgently needed to improve survival rates for this deadly disease. Checkpoint kinase 1 (CHK1) is pivotal in regulating cell survival during oncogene-induced replication stress (RS).

View Article and Find Full Text PDF

Single-cell lineage tracing (scLT) has emerged as a powerful tool, providing unparalleled resolution to investigate cellular dynamics, fate determination, and the underlying molecular mechanisms. This review thoroughly examines the latest prospective lineage DNA barcode tracing technologies. It further highlights pivotal studies that leverage single-cell lentiviral integration barcoding technology to unravel the dynamic nature of cell lineages in both developmental biology and cancer research.

View Article and Find Full Text PDF
Article Synopsis
  • Preclinical models, such as patient-derived xenografts (PDX) and conditional reprogramming (CR), are essential in translational medicine to study diseases using cells derived from patients.
  • The CR technique uses irradiated mouse fibroblasts and a Rho kinase inhibitor to convert both normal and cancerous cells into a rapidly proliferating "stem-like" state while preserving the original genetic makeup.
  • The article focuses on the applications of CR technology for understanding and developing treatments for various respiratory diseases, highlighting its potential in personalized and regenerative medicine.
View Article and Find Full Text PDF

Human ALDH comprise 19 subfamilies in which ALDH1A1, ALDH1A3, ALDH3A1, ALDH5A1, ALDH7A1, and ALDH18A1 are implicated in CSC. Studies have shown that ALDH can also be involved in drug resistance and standard chemotherapy regimens are ineffective in treating patients at the stage of disease recurrence. Existing chemotherapeutic drugs eliminate the bulk of tumors but are usually not effective against CSC which express ALDH+ population.

View Article and Find Full Text PDF

PP2A B55α, encoded by PPP2R2A, acts as a regulatory subunit of the serine/threonine phosphatase PP2A. Despite a frequent loss of heterozygosity of PPP2R2A in cases of non-small cell lung cancer (NSCLC), research on PP2A B55α's functions remains limited and controversial. To investigate the biological roles of PP2A B55α, we conducted bulk RNA-sequencing to assess the impact of PPP2R2A knockdown using two shRNAs in a NSCLC cell line.

View Article and Find Full Text PDF

The interferon stimulated gene 15 (ISG15), a ubiquitin like protein and its conjugates have been implicated in various human malignancies. However, its role in ovarian cancer progression and metastasis is largely unknown. In high grade serous ovarian cancer (HGSOC), ascites is the major contributor to peritoneal metastasis.

View Article and Find Full Text PDF

Checkpoint kinase 1 (CHK1) is critical for cell survival under replication stress (RS). CHK1 inhibitors (CHK1i's) in combination with chemotherapy have shown promising results in preclinical studies but have displayed minimal efficacy with substantial toxicity in clinical trials. To explore combinatorial strategies that can overcome these limitations, we perform an unbiased high-throughput screen in a non-small cell lung cancer (NSCLC) cell line and identify thioredoxin1 (Trx1), a major component of the mammalian antioxidant-system, as a determinant of CHK1i sensitivity.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer is caused by the uncontrolled growth of cells due to genetic changes and epigenetic alterations, with telomeres playing a key role in regulating cellular aging and cancer formation.
  • The enzymes TERT (telomerase reverse transcriptase) and TERC (telomerase RNA component) are important for maintaining telomere length and are often upregulated in cancer, as well as linked to viruses like HPV and EBV for viral replication.
  • Understanding how TERT and TERC affect cancer biology and viral life cycles is crucial for developing new therapeutic strategies against cancer and related diseases.
View Article and Find Full Text PDF

Poly (ADP-ribose) Polymerase (PARP) inhibitors (PARPi) have been approved for both frontline and recurrent setting in ovarian cancer with homologous recombination (HR) repair deficiency. However, more than 40% of BRCA1/2-mutated ovarian cancer lack the initial response to PARPi treatment, and the majority of those that initially respond eventually develop resistance. Our previous study has demonstrated that increased expression of aldehyde dehydrogenase 1A1 (ALDH1A1) contributes to PARPi resistance in BRCA2-mutated ovarian cancer cells by enhancing microhomology-mediated end joining (MMEJ) but the mechanism remains unknown.

View Article and Find Full Text PDF

Checkpoint kinase 1 (CHK1) is critical for cell survival under replication stress (RS). CHK1 inhibitors (CHK1i's) in combination with chemotherapy have shown promising results in preclinical studies but minimal efficacy with substantial toxicity in clinical trials. To explore novel combinational strategies that can overcome these limitations, we performed an unbiased high-throughput screen in a non-small cell lung cancer (NSCLC) cell line and identified thioredoxin1 (Trx1), a major component of the mammalian antioxidant-system, as a novel determinant of CHK1i sensitivity.

View Article and Find Full Text PDF

Drug screening data from massive bulk gene expression databases can be analyzed to determine the optimal clinical application of cancer drugs. The growing amount of single-cell RNA sequencing (scRNA-seq) data also provides insights into improving therapeutic effectiveness by helping to study the heterogeneity of drug responses for cancer cell subpopulations. Developing computational approaches to predict and interpret cancer drug response in single-cell data collected from clinical samples can be very useful.

View Article and Find Full Text PDF

The mitogen-activated protein kinase pathway (MAPK) is one of the major cancer-driving pathways found in non-small cell lung cancer (NSCLC) patients. ERK inhibitors (ERKi) have been shown to be effective in NSCLC patients with MAPK pathway mutations. However, like other MAPK inhibitors, ERKi rarely confers complete and durable responses.

View Article and Find Full Text PDF

Epithelial ovarian cancer is the most lethal malignancy of the female reproductive tract. A healthy ovary expresses both Estrogen Receptor α (ERα) and β (ERβ). Given that ERα is generally considered to promote cell survival and proliferation, thereby, enhancing tumor growth, while ERβ shows a protective effect against the development and progression of tumors, the activation of ERβ by its agonists could be therapeutically beneficial for ovarian cancer.

View Article and Find Full Text PDF

Synthetic lethality through combinatorial targeting DNA damage response (DDR) pathways provides exciting anticancer therapeutic benefit. Currently, the long noncoding RNAs (lncRNAs) have been implicated in tumor drug resistance; however, their potential significance in DDR is still largely unknown. Here, we report that a human lncRNA, CTD-2256P15.

View Article and Find Full Text PDF

Unlabelled: Over 50% of all patients with cancer are treated with radiotherapy. However, radiotherapy is often insufficient as a monotherapy and requires a nontoxic radiosensitizer. Squalene epoxidase (SQLE) controls cholesterol biosynthesis by converting squalene to 2,3-oxidosqualene.

View Article and Find Full Text PDF

Introduction: TMEM205 is a novel transmembrane protein associated with platinum resistance (PR) in epithelial ovarian carcinoma (OC), however, the specific mechanisms associated with this resistance remain to be elucidated.

Methods: TMEM205 expression was evaluated in platinum-sensitive (PS) versus platinum resistant (PR) ovarian cancer cell lines and patient serum/tissues. Exosomal efflux of platinum was evaluated with inductively coupled plasma mass spectrometry (ICP-MS) after pre-treatment with small molecule inhibitors (L-2663/L-2797) of TMEM205 prior to treatment with platinum.

View Article and Find Full Text PDF

DNA lesion bypass facilitates DNA synthesis across bulky DNA lesions, playing a critical role in DNA damage tolerance and cell survival after DNA damage. Assessing lesion bypass efficiency in the cell is important to better understanding of the mechanism of carcinogenesis and chemoresistance. Here we developed a chromatin immunoprecipitation (ChIP)-based method to measure lesion bypass activity across cisplatin-induced intrastrand crosslinks in cancer cells.

View Article and Find Full Text PDF

Purpose: Cell cycle checkpoints and DNA repair are important for cell survival after exogenous DNA damage. Both rapid blockage of G2 to M phase transition in the cell cycle and the maintenance of relatively slow G2 arrest are critical to protect cells from lethal ionizing radiation (IR). Checkpoint kinase 1 is pivotal in blocking the transition from G2 to M phases in response to IR.

View Article and Find Full Text PDF

The Ras subfamily of small GTPases is mutated in ∼30% of human cancers and represents compelling yet challenging anticancer drug targets owing to their flat protein surface. We previously reported a bicyclic peptidyl inhibitor, cyclorasin B3, which binds selectively to Ras-GTP with modest affinity and blocks its interaction with downstream effector proteins in vitro but lacks cell permeability or biological activity. In this study, optimization of B3 yielded a potent pan-Ras inhibitor, cyclorasin B4-27, which binds selectively to the GTP-bound forms of wild-type and mutant Ras isoforms ( = 21 nM for KRasG12V-GppNHp) and is highly cell-permeable and metabolically stable (serum > 24 h).

View Article and Find Full Text PDF

The Fanconi Anemia (FA) pathway is essential for human cells to maintain genomic integrity following DNA damage. This pathway is involved in repairing damaged DNA through homologous recombination. Cancers with a defective FA pathway are expected to be more sensitive to cross-link based therapy or PARP inhibitors.

View Article and Find Full Text PDF

In the last two decades, intensive research has been carried out to improve the survival rates of cancer patients. However, the development of chemoresistance that ultimately leads to tumor relapse poses a critical challenge for the successful treatment of cancer patients. Many cancer patients experience tumor relapse and ultimately die because of treatment failure associated with acquired drug resistance.

View Article and Find Full Text PDF

Rapid tumor growth, widespread brain-invasion, and therapeutic resistance critically contribute to glioblastoma (GBM) recurrence and dismal patient outcomes. Although GBM stem cells (GSC) are shown to play key roles in these processes, the molecular pathways governing the GSC phenotype (GBM-stemness) remain poorly defined. Here, we show that epigenetic silencing of miR-146a significantly correlated with worse patient outcome and importantly, miR-146a level was significantly lower in recurrent tumors compared with primary ones.

View Article and Find Full Text PDF

There is currently a lack of precise predictive biomarkers for patient selection in clinical trials of inhibitors targeting replication stress (RS) response proteins ATR and CHK1. The objective of this study was to identify novel predictive biomarkers for the response to these agents in treating non-small cell lung cancer (NSCLC). A genome-wide loss-of-function screen revealed that tumor suppressor PPP2R2A, a B regulatory subunit of protein phosphatase 2 (PP2A), determines sensitivity to CHK1 inhibition.

View Article and Find Full Text PDF