Publications by authors named "Qi Sui"

This study developed mycelial biochar composites, BQH-AN and BQH-MV, with stable physicochemical properties and significantly improved adsorption capabilities through microbial modification. The results showed that the specific surface area and porosity of BQH-AN (3547.47 m g and 2.

View Article and Find Full Text PDF

Different types of electron transfers (ETs) underlie the versatile use of various solid viologen-derived compounds, which is still insufficiently understood and difficult to control. Here, we demonstrate an effective strategy for modulating the key ET process in crystalline metalloviologen compounds (MVCs). By adjusting the coordinated transition metal ions bearing different electronic structures (e.

View Article and Find Full Text PDF

Marine organisms commonly encounter co-stress resulting from the coexistence of microplastics (MPs) and heavy metals pollution in marine environments. Nevertheless, the combined effects and toxicity mechanisms of MPs and heavy metals on marine organisms remain unclear. This study integrated growth, physiological, morphological, and biochemical markers to assess the individual and combined toxicity of polyvinyl chloride MPs (PVC MPs, 1 × 10 particles/L) and copper (Cu, 200 μg/L) on marine jacopever (Sebastes schlegelii).

View Article and Find Full Text PDF

Microplastics pose a threat to marine environments through their physical presence and as vectors of chemical pollutants. However, the impact of microplastics on the accumulation and human health risk of chemical pollutants in marine organisms remains largely unknown. In this study, we investigated the microplastics and polycyclic aromatic hydrocarbons (PAHs) pollution in marine organisms from Sanggou Bay and analyzed their correlations.

View Article and Find Full Text PDF

We achieve a successful transition of CoO molecules from a homogeneous to a heterogeneous system by modifying the functional groups at their termini. The resulting cocatalyst, denoted as CoO-poly, not only preserved the catalytic sites of CoO molecules but also exhibited outstanding performance in catalyzing water oxidation.

View Article and Find Full Text PDF

Concerns have been raised regarding the adverse effects of nanoparticles (NPs) on marine organisms, as an increasing number of NPs inevitably enter the marine environment with the development of nanotechnology. Owing to the photocatalytic properties, TiO NPs' toxicity may be aggravated by enhanced UV-B resulting from stratospheric ozone depletion. However, the molecular mechanisms of phytoplankton in response to TiO NPs under UV-B remains poorly understood.

View Article and Find Full Text PDF

The Ni60-SiC-CeO strengthening layer with deep remelting pools was constructed on the surface of 7075 aluminum alloy using the laser remelting-cladding processing method, and a soft and hard interphase was prepared on the matrix by the interval of laser remelting, which was inspired by soft-hard interphase structure with excellent crack inhibition performance from the natural world. The microstructure and microhardness of the remelting region and the remelting-cladding region of the strengthening layer were studied. The tensile characteristics of two distinct strengthening layers were investigated in the laboratory.

View Article and Find Full Text PDF

Regulating the interfacial charge transfer behavior between cocatalysts and semiconductors remains a critical challenge for attaining efficient photoelectrochemical water oxidation reactions. Herein, using bismuth vanadate (BiVO ) photoanode as a model, it introduces an Au binding bridge as holes transfer channels onto the surfaces of BiVO , and the cyano-functionalized cobalt cubane (Co O ) molecules are preferentially immobilized on the Au bridge due to the strong adsorption of cyano groups with Au nanoparticles. This orchestrated arrangement facilitates the seamless transfer of photogenerated holes from BiVO to Co O molecules, forming an orderly charge transfer pathway connecting the light-absorbing layer to reactive sites.

View Article and Find Full Text PDF

Although microplastics (MPs) and nanoplastics (NPs) have become a global concern because of their possible hazards to marine organisms, few studies have investigated the effects of MPs/NPs on the nutritional quality of marine economic species, and the toxicity mechanisms remain unclear. We therefore investigated the effects of polystyrene MPs (PS-MPs, 5 μm) and NPs (PS-NPs, 100 nm) at an environmentally relevant concentration on adult scallops Chlamys farreri through the determination of nutritional composition, physiological metabolism, enzymatic response, and histopathology. Results showed that plastic particles significantly decreased the plumpness (by 33.

View Article and Find Full Text PDF

Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in the marine environments due to the wide use and mismanagement of plastics. However, the effect of MPs/NPs on the nutrition quality of economic species is poorly understood, and their underlying mechanisms remained unclear. We therefore investigated the impacts of polystyrene MPs/NPs on the nutrition composition of marine jacopever Sebastes schlegelii from the perspective of assimilation and metabolism.

View Article and Find Full Text PDF

Inkless and erasable printing (IEP) based on chromic materials holds great promise to alleviate environmental and sustainable problems. Metal-organic polymers (MOPs) are bright platforms for constructing IEP materials. However, it is still challenging to design target MOPs with excellent specific functions rationally due to the intricate component-structure-property relationships.

View Article and Find Full Text PDF

Manipulating the radical concentration to modulate the properties in solid multifunctional materials is an attractive topic in various frontier fields. Viologens have the unique redox capability to generate radical states through reversible electron transfer (ET) under external stimuli. Herein, taking the viologens as the model, two kinds of crystalline compounds with different molecule-conjugated systems were designed and synthesized.

View Article and Find Full Text PDF

Photoacoustic tomography (PAT), also known as optoacoustic tomography, is an attractive imaging modality that provides optical contrast with acoustic resolutions. Recent progress in the applications of PAT largely relies on the development and employment of ultrasound sensor arrays with many elements. Although on-chip optical ultrasound sensors have been demonstrated with high sensitivity, large bandwidth, and small size, PAT with on-chip optical ultrasound sensor arrays is rarely reported.

View Article and Find Full Text PDF

Dynamic polarization control (DPC) is beneficial for many optical applications. It is often realized via tunable waveplates to perform automatic polarization tracking and manipulation. Efficient algorithms are essential to realize an endless polarization control process at high speed.

View Article and Find Full Text PDF

Concerns are raised towards individual effects of ocean acidification (OA) and engineered nanoparticles (NPs) on marine organisms. However, there are scarce studies regarding nanotoxicity under OA conditions. We investigated the combined effects of OA (pHs, 7.

View Article and Find Full Text PDF

In the context of energy conservation and emission reduction, more and more attention has been paid to the development of lightweight metal materials with both high strength and high toughness. Inspired by the non-smooth surface of natural organisms, a biomimetic surface with various spacing reticulate units of 7075 aluminum alloys was modified by laser cladding. The microstructure, microhardness and tensile properties of the various spacing units with CeO2-SiC-Ni60 were studied.

View Article and Find Full Text PDF

The relationship between transformational leadership and employee behavior has been a popular topic in organizational research. However, while various factors have been identified for the influence of transformational leadership on employee behavior, researchers have so far failed to explore the impact of transformational leadership on the turnover propensity of the new generation of knowledge workers in terms of a specific orientation. Based on the social exchange theory, this study explored the influence of transformational leadership on the turnover intention of the new generation of knowledgeable employees, considering the mediating role of person-organization fit and the moderating role of job embeddedness.

View Article and Find Full Text PDF

Marine nanoplastics (NPs) have attracted increasing global attentions because of their detrimental effects on marine environments. A co-existing major environmental concern is ocean acidification (OA). However, the effects of differentially charged NPs on marine organisms under OA conditions are poorly understood.

View Article and Find Full Text PDF

The monitoring and conversion of photonic orbital angular momentum (OAM) play fundamental and important roles for both classic and quantum technologies, especially in low-loss transmission media such as ring-core fibers (RCFs), which make many OAM applications practical or vastly more flexible. However, in a RCF, the modes associated with different OAM states are highly overlapping due to the circular refractive index distribution structure, which makes it difficult to distinguish and monitor the OAM modes and in turn limits its inline conversion. Here, we report the first experimental realization of mode monitoring in a RCF using mode filters (MFs), which takes advantage of the difference in the mode adiabatic evolution and the higher-order mode cutoff conditions in tapered RCFs.

View Article and Find Full Text PDF

In this paper, 100 Gb/s/λ 32 quadrature amplitude modulation discrete multi-tone (QAM-DMT) transmission using 10 G-class electro-absorption modulated laser (EML) and 4/5-bit digital-to-analog converters (DACs) are experimentally demonstrated to meet the requirement of intra-datacenter interconnection (intra-DCI). Unequal length multi-band (ULM) discrete Fourier transform spread (DFT-S) precoding is investigated to alleviate the distortion induced by the high peak-to-average power ratio (PAPR) of DMT. The results show that the required computational complexity of ULM DFT-S precoding with 2-bands (k=256, k=64) decreases sharply compared to the traditional DFT-S technique with only about 0.

View Article and Find Full Text PDF

In this paper, a modified low-bandwidth sub-Nyquist sampling receiving scheme enabled by optical shaping is investigated in an intensity modulation/direct detection (IM/DD) orthogonal frequency-division multiplexing (OFDM) system, which can reduce the sampling rate and analog bandwidth of an analog-to-digital converter (ADC) at the receiving end. By changing the phase matrix of preprocessing, the modified scheme can distinguish different groups of data only by controlling the delay of the shaping module. In addition, the proposed RF sharing architecture can further reduce the cost and increase the feasibility of the scheme.

View Article and Find Full Text PDF

A multi-channel orbital angular momentum (OAM) mode generation and switching scheme is proposed and demonstrated based on an in-fiber mode selective interferometer (MSI), which is formed in a four-mode fiber. The MSI consists of two strong modulated long-period fiber gratings (LPFGs), which realizes the mode selected coupling between a target mode pair. With the optimized structural parameters, the MSI can couple a launched LP (or OAM) into a desired higher-order azimuthal mode (HAM, LPl or OAM, l≥1) at multiple wavelength channels and generate the HAM with high-purity.

View Article and Find Full Text PDF

An orbital angular momentum (OAM) fiber amplifier supporting 20 OAM modes based on a ring-core Yb-doped fiber (RC-YDF) is proposed and demonstrated. The RC-YDF we designed and fabricated has two successive Yb-doped annular layers in the ring-core and can support the amplification of OAM (|l|=1, 2, 3, 4, 5) modes at the wavelength of 1064 nm. With a core pump configuration, we characterize the amplification performance of the RC-YDF based amplifier by simulation and experiments.

View Article and Find Full Text PDF

In this Letter, a low-cost radio-over-fiber (RoF) system at the Ka band based on a low-resolution digital-to-analog converter (DAC) is proposed and investigated. The noise shaping (NS) technique is adopted to suppress the in-band quantization noise induced by the low-resolution DAC. To evaluate the performance of the proposed RoF system, the transmission of a 80/100-Gbit/s dual-polarization 16/32-QAM signal over 20-km single-mode fiber (SMF) and 1-m 2 × 2 multi-in multi-out (MIMO) wireless link coupled with a 2/3/4-bit DAC is experimentally demonstrated.

View Article and Find Full Text PDF

Maximum likelihood sequence estimation (MLSE) is an optimal solution to realize sequence detection in the digital signal processing (DSP) of short reach O-band intensity modulation/direct detection (IM/DD) systems with bandwidth limitation. However, traditional MLSE requires relatively high computational complexity for short reach optical interconnect. Although the computational complexity of single-symbol sequence detection is quite low, the capability of combating with the inter symbol interference (ISI) is inadequate.

View Article and Find Full Text PDF