When a child shows signs of potential motor developmental disorders, early diagnosis of central nervous system (CNS) impairment is beneficial. Known as the first CNS-controlled mobility for most of infants, mobility during crawling usually has been used in clinical assessments to identify motor development disorders. The current clinical scales of motor development during crawling stage are relatively subjective.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Hands and knees crawling is an important motor developmental milestone, which is characterized by diagonal coordination between upper and lower limbs. However, the features of inter-joint synergy within each limb in infant crawling is still not clear. Therefore, the aim of this study was to extract the inter-joint synergistic patterns during infant crawling and to test the possibilities of using the extracted inter-joint synergy to distinguish developmental delayed (DD) infants from typical developing (TD) infants.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
It has been widely accepted that the central nervous system (CNS) modulates muscle synergies to simplify motion control. However, it is still unclear that if there is a synergistic recruitment strategy to organize oscillation components of surface electromyography (sEMG) signals for limb movement. The sEMG signals were recorded from bilateral biceps brachii (BB) and triceps brachii (TB) muscles during infant crawling.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
The aim of this study was to quantify and compare the inter-limb muscle coordination during crawling between typically developing infants and infants with developmental delay. Typically developing (TD, $\text{N}=$20) infants and infants with at risk of developmental delay (ARDD, $\textbf{N}=$33) or confirmed developmental delayCDD, N=14) participated in this study. Surface electromyography of eight muscles from arms and legs and the corresponding joint kinematic data were collected while they were crawling on hands and knees at their self-selected velocity.
View Article and Find Full Text PDFHands-and-knees-crawling is an important motor developmental milestone and a unique window into the development of central nervous system (CNS). Mobility during crawling is regularly used in clinical assessments to identify delays in motor development. However, possible contribution from CNS impairments to motor development delay is still unknown.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
April 2018
Hands and knees crawling is an important motor developmental milestone but the current clinical measures of motor function during crawling stage are relatively subjective. Objective metrics using kinematics and electromyography (EMG) in infant crawling may provide more stable and accurate measures of such developmental milestone, demonstrating changes in locomotion during age span. The purpose of this paper was to determine whether joint kinematics and the underlying co-activation between flexor and extensor in infant crawling are different for arms and legs across the infant age span.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Infant crawling is part of normal human gross motor development, and a 4-beat gait that involves rhythmical flexion and extension of limbs and the underlying muscle co-activation of antagonist muscle around the joint. However, detection the co-activation pattern of antagonist muscle are sparse due to the general difficulty of measuring locomotion in human infants. In this paper, sEMG of antagonist muscles and the corresponding kinematics data of limbs were collected when infants were crawling on hands and knees at their self-selected speed.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2016
Muscle Co-activation (MCo) is the simultaneous muscular activation of agonist and antagonist muscle groups, which provides adequate joint stability, movement accuracy during movement. Infant crawling is an important stage of motor function development that manifests non-synchronization growth and development of upper and lower limbs due to the well-known gross motor development principle of head to toe. However, the effect of MCo level for agonist and antagonist muscle groups on motor function development of limbs has not been previously reported.
View Article and Find Full Text PDF