Publications by authors named "Qi Jinshun"

Ti-6.5Al-2Zr-1Mo-1V (TA15), widely used in the aerospace industry, is a medium- to high-strength, near-α titanium alloy with high aluminium equivalent value. The TA15 fabricated via laser powder bed fusion (L-PBF) normally presents a typical brittle appearance in as-built status, with high strength and low ductility.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive and degenerative disorder accompanied by cognitive decline, which could be promoted by mitochondrial dysfunction induced by mitochondrial Ca (mCa ) homeostasis Mitochondrial calcium uniporter (MCU), a key channel of mCa uptake, may be a target for AD treatment. In the present study, we reveal for the first time that knockdown in hippocampal neurons improves the memory performance of APP/PS1/tau mice through radial arm maze task. Western blot analysis, transmission electron microscopy (TEM), Golgi staining, immunohistochemistry (IHC) and ELISA results demonstrate that knockdown in hippocampal neurons upregulates the levels of postsynaptic density protein 95 (PSD95) and synaptophysin (SYP), and increases the numbers of synapses and dendritic spines.

View Article and Find Full Text PDF

Agomelatine is a selective agonist of melatonin receptor 1A/melatonin receptor 1B (MT/MT) and antagonist of 5-hydroxytryptamine 2C receptors. It is used clinically to treat major depressive episodes in adults. The pro-chronobiological activity of agomelatine reconstructs sleep-wake rhythms and normalizes circadian disturbances via its agonistic effect of melatonin receptor 1A/melatonin receptor 1B, which work simultaneously to counteract depression and anxiety disorder.

View Article and Find Full Text PDF

Autophagy is a major intracellular degradation pathway for the clearance of damaged organelles and misfolded peptides. Previous studies have indicated that autophagy is involved in the pathogenesis of neurodegenerative disease including Alzheimer's disease (AD). Defective autophagy and highly expressed ubiquitin-conjugating enzyme 2 C (Ube2c) have been found in AD patients and mouse.

View Article and Find Full Text PDF

In our previous studies, we have shown that (D-Ser2) oxyntomodulin (Oxm), a glucagon-like peptide 1 (GLP-1) receptor (GLP1R)/glucagon receptor (GCGR) dual agonist peptide, protects hippocampal neurons against Aβ-induced cytotoxicity, and stabilizes the calcium homeostasis and mitochondrial membrane potential of hippocampal neurons. Additionally, we have demonstrated that (D-Ser2) Oxm improves cognitive decline and reduces the deposition of amyloid-beta in Alzheimer's disease model mice. However, the protective mechanism remains unclear.

View Article and Find Full Text PDF

Background: Cognitive deficit is mainly clinical characteristic of Alzheimer's disease (AD). Recent reports showed adiponectin and its analogues could reverse cognitive impairments, lower amyloid-β protein (Aβ) deposition, and exert anti-inflammatory effects in different APP/PS1 AD model mice mainly exhibiting amyloid plaque pathology. However, the potential in vivo electrophysiological mechanism of adiponectin protecting against cognitive deficits in AD and the neuroprotective effects of adiponectin on 3xTg-AD mice including both plaque and tangle pathology are still unclear.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a degenerative disorder, accompanied by progressive cognitive decline, for which there is no cure. Recently, the close correlation between AD and type 2 diabetes mellitus (T2DM) has been noted, and a promising anti-AD strategy is the use of anti-T2DM drugs.

Objective: To investigate if the novel glucagon-like peptide-1 (GLP-1)/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist DA4-JC shows protective effects in the triple APP/PS1/tau mouse model of AD.

View Article and Find Full Text PDF

Sleep exerts important functions in the regulation of cognition and emotion. Recent studies have found that sleep disorder is one of the important risk factors for Alzheimer's disease (AD), but the effects of chronic sleep deprivation on the cognitive functions of AD model mice and its possible mechanism are still unclear. In the present study, 8-month-old male APP/PS1/tau triple transgenic AD model (3xTg-AD) mice and wild type (WT) mice (n = 8 for each group) were subjected to chronic sleep deprivation by using the modified multiple platform method, with 20 h of sleep deprivation each day for 21 days.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is a progressive condition linked to memory issues, and chronic sleep deprivation (SD) is being investigated as a potential risk factor for worsening cognitive decline.
  • In a study, APP/PS1 transgenic mice (a model for AD) and wild type mice underwent 20 hours of sleep deprivation each day for 21 days, which resulted in significant cognitive impairments and alterations in brain function.
  • The findings showed that chronic SD not only worsened cognitive deficits by increasing amyloid-β deposits and activating microglia in the brain but also impacted synaptic plasticity by reducing the level of PSD95, suggesting that SD contributes to AD progression in both mouse models.
View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function. Type 2 diabetes mellitus (T2DM) is an important risk factor for AD. Glucose-dependent insulinotropic polypeptide (GIP) has been identified to be effective in T2DM treatment and neuroprotection.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is an intractable neurodegenerative disorder in the elderly population, currently lacking a cure. Trichostatin A (TSA), a histone deacetylase inhibitor, showed some neuroprotective roles, but its pathology-improvement effects in AD are still uncertain, and the underlying mechanisms remain to be elucidated. The present study aims to examine the anti-AD effects of TSA, particularly investigating its underlying cellular and molecular mechanisms.

View Article and Find Full Text PDF

Cognitive impairments and circadian rhythm disorders are the main clinical manifestations of Alzheimer's disease (AD). Orexin has been reported as abnormally elevated in the cerebrospinal fluid of AD patients, accompanied with cognitive impairments. Our recent research revealed that suvorexant, a dual orexin receptor antagonist, could improve behavioral circadian rhythm disorders in 9-month-old APP/PS1 mice.

View Article and Find Full Text PDF
Article Synopsis
  • - Alzheimer's disease (AD) is a serious neurodegenerative disorder linked to type 2 diabetes, and current treatments cannot stop its progression.
  • - A study found that a novel anti-diabetic drug called Triagonist improved memory and synaptic function in a mouse model of AD by increasing synaptic activities and modulating calcium flow in neurons.
  • - The research suggests that Triagonist enhances memory formation and neuronal health, indicating that targeting multiple receptors may be an effective new treatment strategy for AD.
View Article and Find Full Text PDF

Cognitive decline, memory impairment and circadian rhythm disturbance are iconic manifestations of Alzheimer's disease (AD). APPswe/PS1dE9 (APP/PS1) mice, a model of AD, show deficits in multiple learning and memory abilities, synaptic plasticity, and behavioral circadian rhythm, but whether circadian differences in cognitive performance and synaptic plasticity could be affected in AD remain unclear. Here, the cognitive behaviors of 6-month-old APP/PS1 mice were assessed by multiple behavior tests in the rest phase (light period) or active phase (dark period) of the day.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease that severely affects the health and lifespan of the elderly worldwide. Recently, the correlation between AD and type 2 diabetes mellitus (T2DM) has received intensive attention, and a promising new anti-AD strategy is the use of anti-diabetic drugs. Oxyntomodulin (Oxm) is a peptide hormone and growth factor that acts on neurons in the hypothalamus.

View Article and Find Full Text PDF

Exaggerated Ca2+ signaling might be one of primary causes of neural dysfunction in Alzheimer's disease (AD). And the intracellular Ca2+ overload has been closely associated with amyloid-β (Aβ)-induced endoplasmic reticulum (ER) stress and memory impairments in AD. Here we showed for the first time the neuroprotective effects of Xestospongin C (XeC), a reversible IP3 receptor antagonist, on the cognitive behaviors and pathology of APP/PS1 AD mice.

View Article and Find Full Text PDF

Memory deficits with aging are related to the neurodegeneration in the brain, including a reduction in arginine vasopressin (AVP) in the brain of patients with Alzheimer's disease (AD). AVP(4-8), different from its precursor AVP, plays memory enhancement roles in the CNS without peripheral side-effects. However, it is not clear whether AVP(4-8) can improve cognitive behaviors and synaptic plasticity in the APP/PS1 mouse model of AD.

View Article and Find Full Text PDF

Objective: To observe the gait changes of Alzheimer's disease PS1M146V/APPswe/tauP301L triple-transgenic (3xTg-AD) mice and to investigate the improvement effect of single chain variable domain antibody fragment 17 (scFv17) on the gait.

Methods: In the present study, a selection of 6-month-old 3xTg-AD mice (=18) and C57BL/6 wild-type mice (=24) was performed. First, we observed their gait changes and found that the gait of 12-month-old 3xTg-AD mice was severely damaged.

View Article and Find Full Text PDF

APP/PS1/tau triple transgenic (3xTg) mouse is a classical animal model of Alzheimer's disease (AD), which has abnormalities in recognition and electrophysiological properties at early 6-month-old age. However, few studies were performed by using simultaneously recording cognitive behavior and brain electrical activity in the conscious 3xTg mice. By using a new wireless recording system, we recorded hippocampal Theta oscillations in 3xTg mice during the process of fear conditioning test.

View Article and Find Full Text PDF

Amyloid-β (Aβ) peptide and α-synuclein (α-syn) are major components of senile plaques in Alzheimer's disease (AD) and Lewy bodies in Parkinson's disease (PD), respectively. Co-occurrence of Aβ and α-syn in the senile brains of AD and LB diseases suggests interactions between the two proteins. However, the significance of the overlapping deposition, especially the effects of α-syn on the Aβ aggregation, still remains to be clarified.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia among the elderly, characterized by amyloid plaques, neurofibrillary tangles, and neuroinflammation in the brain, as well as impaired cognitive behaviors. A sex difference in the prevalence of AD has been noted, while sex differences in the cerebral pathology and relevant molecular mechanisms are not well clarified. In the present study, we systematically investigated the sex differences in pathological characteristics and cognitive behavior in 12-month-old male and female APP/PS1/tau triple-transgenic AD mice (3×Tg-AD mice) and examined the molecular mechanisms.

View Article and Find Full Text PDF

Immunotherapy for Alzheimer's disease (AD) remains promising in the improvement of cognition and memory via the clearing of amyloid-β protein (Aβ) in the AD brain, despite some side effects. Our previous studies demonstrated that the 31-35 sequence of the Aβ molecule was the shortest active center and that polyclonal anti-Aβ31-35 antibody reduced neuronal apoptosis and cognitive impairments induced with acute Aβ application. The present study designed a novel single-chain variable fragment (scFv) monoclonal anti-Aβ31-35 antibody (scFv17) that specifically recognized extracellular Aβ and observed protective effects of scFv17 on pathological impairments in APP/PS1 transgenic mice.

View Article and Find Full Text PDF

Objective: To observe the expressions of synaptophysin and BDNF/Trk-B in cerebellum of APPswe/PS1dE9 transgenic mice.

Methods: The healthy 9-month old APP/PS1 male mice (n1) and the same wild type male mice(n2) were divided into two groups, APP/PS1 group and wild-type(WT) group. The expressions of synaptophysin and brain-derived neurotrophic factor/tyrosine kinase B (BDNF/Trk-B) in cerebellum were determined by Western blot (n1=6; n2=6) and immunohistochemical(n1=4; n2=4).

View Article and Find Full Text PDF

Objective: To investigate the effects of adiponectin (APN) on anxiety and memory impairment of 9-month-old triple transgenic Alzheimer's disease (3xTg-AD) model mice.

Methods: The 9-month-old 3xTg-AD mice and C57BL/6J mice were randomly divided into four groups (=8 for each group):Wild type(WT)+Saline, 3xTg-AD +Saline, WT+APN and 3xTg-AD +APN group. All mice were implanted cannula in lateral ventricle and each mouse was intracerebroventricular injected with adiponectin or saline under free moving condition after 7 days recovery.

View Article and Find Full Text PDF