This research examined machine learning (ML) techniques for predicting the compressive strength (CS) of self-compacting concrete (SCC). Multilayer perceptron (MLP), bagging regressor (BR), and support vector machine (SVM) were utilized for analysis. A total of 169 data points were retrieved from the various published articles.
View Article and Find Full Text PDFEstimating concrete properties using soft computing techniques has been shown to be a time and cost-efficient method in the construction industry. Thus, for the prediction of steel fiber-reinforced concrete (SFRC) strength under compressive and flexural loads, the current research employed advanced and effective soft computing techniques. In the current study, a single machine learning method known as multiple-layer perceptron neural network (MLPNN) and ensembled machine learning models known as MLPNN-adaptive boosting and MLPNN-bagging are used for this purpose.
View Article and Find Full Text PDFRebars made of fiber-reinforced plastic (FRP) might be the future reinforcing material, replacing mild steel rebars, which are prone to corrosion. The bond characteristics of FRP rebars differ from those of mild steel rebars due to their different stress-strain behavior than mild steel. As a result, determining the bond strength (BS) qualities of FRP rebars is critical.
View Article and Find Full Text PDFReinforced concrete structures are subjected to frequent maintenance and repairs due to steel reinforcement corrosion. Fiber-reinforced polymer (FRP) laminates are widely used for retrofitting beams, columns, joints, and slabs. This study investigated the non-linear capability of artificial intelligence (AI)-based gene expression programming (GEP) modelling to develop a mathematical relationship for estimating the interfacial bond strength (IBS) of FRP laminates on a concrete prism with grooves.
View Article and Find Full Text PDF