The Philippines are projected to be a top contributor to oceanic plastic pollution by 2025, ranking first globally for riverine plastic emissions. However, comprehensive empirical data on litter leakage is lacking, impeding accurate estimates and mitigation efforts. We conducted the first thorough assessment of plastic within a 100 km radius of Davao City, Mindanao, Philippines using a stratified random sampling design.
View Article and Find Full Text PDFCambodia is a rapidly developing country in south-east Asia, a region forecast as an outsized source of plastic pollution into the world's oceans. However, to date there has been no large-scale assessment of plastic pollution in the environment within the country. We conducted a comprehensive assessment of plastic items and hotspots across 243 coastal, river and inland sites along the entire coastline of Cambodia, recording 46,927 items in transects throughout the study area.
View Article and Find Full Text PDFThere are many benefits to be realized by applying a disaster risk reduction framework to the context of plastic pollution, especially in regards to operationalizing the precautionary principle that is inherent in many international treaties and conventions. We explore the implications of framing plastic pollution as a 'disaster' in light of the development of the new global instrument to end plastic pollution by aligning the objectives of the United Nations (UN) Sendai Framework for Disaster Risk Reduction 2015-2030 (SF) and the UN Sustainable Development Goals (SDGs); and thereby also complementing the many climate and non-climate mandates embedded within the UN Framework Convention on Climate Change (UNFCCC). It has been proposed that the UN global instrument to end plastic pollution could be based on the guidelines of the Paris Agreement (PA), driven by national action plans, potential to offset and mandatory reporting requirements.
View Article and Find Full Text PDFPlastic litter is a pollutant of aquatic environments worldwide, with some of the world's highest litter densities occurring in freshwater ecosystems. Little information about the risk that plastic litter poses to aquatic wildlife is available across the world's most polluted waterways. To help assess the risk to aquatic species where empirical data is lacking, our review presents i) a risk assessment methodology for predicting plastic litter impacts on aquatic wildlife in data poor environments, ii) a case study demonstrating this risk assessment methodology for wildlife across two heavily polluted river basins in Asia, the Mekong and Ganges River Basins; and iii) a broad review summarising common trends in litter interactions and risk to freshwater fish, aquatic birds, cetaceans and raptors.
View Article and Find Full Text PDFPlastic in the marine environment is a growing environmental issue. Sea turtles are at significant risk of ingesting plastic debris at all stages of their lifecycle with potentially lethal consequences. We tested the relationship between the amount of plastic a turtle has ingested and the likelihood of death, treating animals that died of known causes unrelated to plastic ingestion as a statistical control group.
View Article and Find Full Text PDFAnthropogenic debris in the world's oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia's coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species.
View Article and Find Full Text PDFPlastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution.
View Article and Find Full Text PDFBackground: There are two predominant hypotheses as to why animals ingest plastic: 1) they are opportunistic feeders, eating plastic when they encounter it, and 2) they eat plastic because it resembles prey items. To assess which hypothesis is most likely, we created a model sea turtle visual system and used it to analyse debris samples from beach surveys and from necropsied turtles. We investigated colour, contrast, and luminance of the debris items as they would appear to the turtle.
View Article and Find Full Text PDFNumerous species of seabirds have been shown to ingest anthropogenic debris, but few studies have compared ingestion rates between adults and juveniles of the same species. We investigated marine debris ingestion by short-tailed shearwaters (Puffinus tenuirostris) obtained through two stranding events on North Stradbroke Island, Australia in 2010 (n=102; adult) and 2012 (n=27; juveniles). Necropsies were conducted and solid contents found in guts were categorized into type and color.
View Article and Find Full Text PDFIngestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011.
View Article and Find Full Text PDFMarine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006-2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas) and by turtle size class (smaller oceanic feeders vs.
View Article and Find Full Text PDFThe blue-lined octopus contains the powerful neuromuscular blocker tetrodotoxin (TTX), which causes muscle weakness and respiratory failure. is regarded as one of the most venomous marine animals in the world, and multiple human fatalities have been attributed to the octopus. To date, there have been no recorded incidents of an envenomation of a wild animal.
View Article and Find Full Text PDF