Publications by authors named "Q X Shen"

Diabetic foot ulcers (DFUs) represents a significant public health issue, with a rising global prevalence and severe potential complications including amputation. Traditional treatments often fall short due to various limitations such as high recurrence rates and extensive resource utilization. This editorial explores the innovative use of acellular fish skin grafts as a transformative approach in DFU management.

View Article and Find Full Text PDF

Before patients begin out-of-bed exercises following internal fixation surgery for acetabular fractures, turning over in bed serves as a crucial intervention to mitigate complications associated with prolonged bed rest. However, data on the safety of this maneuver post-surgery are limited, and the biomechanical evidence remains unclear. This study aims to introduce a novel loading protocol designed to preliminarily simulate the action of turning over in bed and to compare the biomechanical properties of two fixation methods for acetabular fractures under this new protocol.

View Article and Find Full Text PDF

Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses.

View Article and Find Full Text PDF

Manipulating viral protein stability using the cellular ubiquitin-proteasome system (UPS) represents a promising approach for developing live-attenuated vaccines. The first-generation proteolysis-targeting (PROTAR) vaccine had limitations, as it incorporates proteasome-targeting degrons (PTDs) at only the terminal ends of viral proteins, potentially restricting its broad application. Here we developed the next-generation PROTAR vaccine approach, referred to as PROTAR 2.

View Article and Find Full Text PDF

Introduction: Neonatal seizures are the most common clinical manifestation of neurological dysfunction in newborns, with an incidence ranging from 1 to 5‰. However, the therapeutic efficacy of current pharmacological treatments remains suboptimal. This study aims to utilize genetically modified hamsters with hypertriglyceridaemia (HTG) to investigate the effects of elevated triglycerides on neuronal excitability and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF