Publications by authors named "Q M Anstee"

Fibrosis is a pathological condition characterized by excessive accumulation of extracellular matrix (ECM) components, particularly collagens, leading to tissue scarring and organ dysfunction. In fibrosis, an imbalance between collagen synthesis (fibrogenesis) and degradation (fibrolysis) results in the deposition of fibrillar collagens disrupting the structural integrity of the ECM and, consequently, the tissue architecture. Fibrosis is associated with a wide range of chronic diseases, including liver cirrhosis, kidney fibrosis, pulmonary fibrosis, and autoimmune diseases.

View Article and Find Full Text PDF

Background: The continuum of metabolic syndrome encompasses a spectrum of dysfunctions impacting obesity-linked insulin resistance, glucose homeostasis, lipid metabolism and pro-inflammatory immune responses. The global prevalence of metabolic diseases, including diabetes, chronic liver disease, cardiometabolic disease and kidney disease, has surged in recent decades, contributing significantly to population mortality. Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is a leading cause of liver disease worldwide.

View Article and Find Full Text PDF

Background And Aims: The performance of non-invasive liver tests (NITs) is known to vary across settings and subgroups. We systematically evaluated whether the performance of three NITs in detecting advanced fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) varies with age, sex, body mass index (BMI), type 2 diabetes mellitus (T2DM) status or liver enzymes.

Methods: Data from 586 adult LITMUS Metacohort participants with histologically characterised MASLD were included.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH) are associated with a high prevalence of type 2 diabetes (T2D). Individuals with MASLD exhibit insulin resistance (IR) and hyperglycemia, but it is unclear whether hepatic glucose production (HGP) is increased with MASLD severity. We evaluated HGP in a cohort of histologically characterized individuals with MASL/MASH using stable isotope infusion (6,6-H-glucose, U-H-glycerol) and liver-specific genome-scale metabolic models (GEMs).

View Article and Find Full Text PDF
Article Synopsis
  • Metabolic dysfunction-associated steatohepatitis (MASH) is a serious liver condition with limited treatment options and relies on manual biopsies for assessment, which often shows high variability among readers.
  • A new artificial intelligence (AI) system, AIM-MASH, has been developed and validated across multiple sites to assist pathologists in scoring liver biopsies related to MASH, showing high reliability and consistency compared to traditional methods.
  • AIM-MASH significantly improved the accuracy of assessing key factors like inflammation and MASH resolution when used by expert pathologists, suggesting it can reduce variability and enhance the evaluation of new treatments in MASH clinical trials.
View Article and Find Full Text PDF