Publications by authors named "Q G Rong"

Imine-based covalent organic frameworks (COFs) have been widely applied in photocatalytic hydrogen peroxide (HO) production because of their highly crystalline properties and tunable chemical structures. However, the inherent polarization of C═N linkage brings a high energy barrier for π-electron delocalization, impeding the in-plane photoelectron transfer process, which leads to an inadequate efficiency of HO photosynthesis. In addition, the chemical stability of most imine-COFs remains insufficient due to the reversible nature of imine linkage.

View Article and Find Full Text PDF

Interfacial engineering is essential to achieve optical efficiencies and facilitate the industrialization of organic solar cells (OSCs). By doping organosilica nanodots (OSiNDs) into zinc oxide (ZnO), we have developed a hybrid ZnO/OSiNDs (4 wt %) cathode interface layer (CIL) that significantly enhances the overall performance of inverted organic solar cells (i-OSCs). In the PM6/BTP-eC9 active layer system, i-OSC devices with a ZnO/OSiNDs (4 wt %) CIL exhibit a superior power conversion efficiency (PCE) of 17.

View Article and Find Full Text PDF

Recognizing ripe tomatoes is a crucial aspect of tomato picking. To ensure the accuracy of inspection results, You Only Look Once version 9 (YOLOv9) has been explored as a fruit detection algorithm. To tackle the challenge of identifying tomatoes and the low accuracy of small object detection in complex environments, we propose a ripe tomato recognition algorithm based on an enhanced YOLOv9-C model.

View Article and Find Full Text PDF

Klebsiella aerogenes HC10 is one of the few strains isolated from contaminated soil that efficiently oxidizes Sb. However, the sensitivity of microorganisms to environmental conditions limits Sb-oxidizing bacteria applications in soil remediation. Immobilizing Sb-oxidizing bacteria is a promising strategy to improve colonization rates and microorganism inefficiencies and to strengthen bioremediation in Sb-contaminated soil.

View Article and Find Full Text PDF

The exceptional selectivity and responsive ion transport in biological channels inspire technology breakthrough in energy, environmental, and resource sectors. However, existing nanofluidic systems with a high photothermal conversion efficiency often exhibit excessive thermal conductivity, which impedes the creation of effective temperature gradients and results in a low ion transport efficiency. In this study, a strategy based on the synchronic stacking of metallic and nonmetallic two-dimensional (2D) nanosheets was presented to construct heterogeneous nanofluidic channels.

View Article and Find Full Text PDF