Publications by authors named "Q DU"

: Tumor associated macrophages (TAMs) are critical components in regulating the immune statuses of the tumor microenvironments. Although TAM has been intensively studied, it is unclear how mitochondrial proteins such as AGK regulate the TAMs' function. : We investigated the AGK function in TAMs using macrophage-specific deficient mice with B16 and LLC syngeneic tumor models.

View Article and Find Full Text PDF

Mast cells (MCs) are critical components of both innate and adaptive immune processes. They play a significant role in protecting human health and in the pathophysiology of various illnesses, including allergies, cardiovascular diseases and autoimmune diseases. Recent studies in tumor-related research have demonstrated that mast cells exert a substantial influence on tumor cell behavior and the tumor microenvironment, exhibiting both pro- and anti-tumor effects.

View Article and Find Full Text PDF

Aim: Ovarian cancer (OC) is a fatal female malignant tumor that severely impacts the health of women worldwide. Due to the lack of diagnostic biomarkers, 70% of OC patients are considered in the advanced stage at the first diagnosis. Exploring novel biomarkers for OC diagnosis has become an urgent clinical need to address.

View Article and Find Full Text PDF

Background: Acute respiratory distress syndrome (ARDS) is a severe form of organ dysfunction and a common postoperative complication. This study aims to develop a predictive model for ARDS in postoperative patients with gastrointestinal perforation to facilitate early detection and effective prevention.

Methods: In this single-center retrospective study, clinical data were collected from postoperative patients with gastrointestinal perforation admitted to the ICU in Hebei Provincial People's Hospital from October 2017 to May 2024.

View Article and Find Full Text PDF

Nonvolatile control of spin order or spin excitations offers a promising avenue for advancing spintronics; however, practical implementation remains challenging. In this Letter, we propose a general framework to realize electrical control of magnons in 2D magnetic insulators. We demonstrate that in bilayer ferromagnetic insulators with strong spin-layer coupling, the electric field can effectively manipulate the spin exchange interactions between the layers, enabling nonvolatile control of the corresponding magnons.

View Article and Find Full Text PDF