Wide field of view and light weight optics are critical for advanced eyewear, with applications in augmented/virtual reality and night vision. Conventional refractive lenses are often stacked to correct aberrations at a wide field of view, leading to limited performance and increased size and weight. In particular, simultaneously achieving a wide field of view and large aperture for light collection is desirable but challenging to realize in a compact form-factor.
View Article and Find Full Text PDFLight's ability to perform massive linear operations in parallel has recently inspired numerous demonstrations of optics-assisted artificial neural networks (ANN). However, a clear system-level advantage of optics over purely digital ANN has not yet been established. While linear operations can indeed be optically performed very efficiently, the lack of nonlinearity and signal regeneration require high-power, low-latency signal transduction between optics and electronics.
View Article and Find Full Text PDFActive metasurfaces with tunable subwavelength-scale nanoscatterers are promising platforms for high-performance spatial light modulators (SLMs). Among the tuning methods, phase-change materials (PCMs) are attractive because of their nonvolatile, threshold-driven, and drastic optical modulation, rendering zero-static power, crosstalk immunity, and compact pixels. However, current electrically controlled PCM-based metasurfaces are limited to global amplitude modulation, which is insufficient for SLMs.
View Article and Find Full Text PDFSubwavelength diffractive optics known as meta-optics have demonstrated the potential to significantly miniaturize imaging systems. However, despite impressive demonstrations, most meta-optical imaging systems suffer from strong chromatic aberrations, limiting their utilities. Here, we employ inverse-design to create broadband meta-optics operating in the long-wave infrared (LWIR) regime (8-12 μm).
View Article and Find Full Text PDFLaser scanning based on Micro-Electro-Mechanical Systems (MEMS) scanners has become very attractive for biomedical endoscopic imaging, such as confocal microscopy or Optical Coherence Tomography (OCT). These scanners are required to be fast to achieve real-time image reconstruction while working at low actuation voltage to comply with medical standards. In this context, we report a 2-axis Micro-Electro-Mechanical Systems (MEMS) electrothermal micro-scannercapable of imaging large fields of view at high frame rates, e.
View Article and Find Full Text PDF