The circadian clock regulates the daily pattern of temporal gene expression. In Arabidopsis, aging is associated with a shortening of the endogenous period of circadian rhythms under circadian conditions. However, the functional link between the circadian clock and aging under diurnal conditions and its physiological relevance remain elusive.
View Article and Find Full Text PDFDuring leaf senescence, autophagy plays a critical role by removing damaged cellular components and participating in nutrient remobilization to sink organs. However, how AUTOPHGAY (ATG) genes are regulated during natural leaf senescence remains largely unknown. In this study, we attempted to identify upstream transcriptional regulator(s) of ATGs and their molecular basis during leaf senescence in Arabidopsis through the combined analyses of promoter binding, autophagy flux, and genetic interactions.
View Article and Find Full Text PDFLeaf senescence is a crucial process throughout evolution, vital for plant fitness as it facilitates the gradual shift of energy allocation between photosynthesis and catabolism overtime. This onset is influenced by a complex interplay of genetic and environmental factors, making senescence a key adaptation mechanism for plants in their natural habitats. Our study investigated the genetic mechanism underlying age-induced leaf senescence in Arabidopsis natural populations.
View Article and Find Full Text PDFLeaf senescence is an integrated response of the cells to develop age information and various environmental signals. Thus, some of the genes involved in the response to environmental changes are expected to regulate leaf senescence. Light acts not only as the primary source of energy for photosynthesis but also as an essential environmental cue that directly control plant growth and development including leaf senescence.
View Article and Find Full Text PDFLeaf senescence is a developmental process by which a plant actively remobilizes nutrients from aged and photosynthetically inefficient leaves to young growing ones by disassembling organelles and degrading macromolecules. Senescence is accelerated by age and environmental stresses such as prolonged darkness. Phytochrome B (phyB) inhibits leaf senescence by inhibiting phytochrome-interacting factor 4 (PIF4) and PIF5 in prolonged darkness.
View Article and Find Full Text PDFNitrogen (N) is a major limiting factor affecting crop yield in unfertilized soil. Thus, cultivars with a high N use efficiency (NUE) and good grain protein content (GPC) are needed to fulfill the growing food demand and to reduce environmental burden. This is especially true for rice (Oryza sativa L.
View Article and Find Full Text PDFNitrogen (N) is a major factor for plant development and productivity. However, the application of nitrogenous fertilizers generates environmental and economic problems. To cope with the increasing global food demand, the development of rice varieties with high nitrogen use efficiency (NUE) is indispensable for reducing environmental issues and achieving sustainable agriculture.
View Article and Find Full Text PDFLeaf senescence is an important developmental process involving orderly disassembly of macromolecules for relocating nutrients from leaves to other organs and is critical for plants' fitness. Leaf senescence is the response of an intricate integration of various environmental signals and leaf age information and involves a complex and highly regulated process with the coordinated actions of multiple pathways. Impressive progress has been made in understanding how senescence signals are perceived and processed, how the orderly degeneration process is regulated, how the senescence program interacts with environmental signals, and how senescence regulatory genes contribute to plant productivity and fitness.
View Article and Find Full Text PDFLeaf senescence involves degenerative but active biological processes that require balanced regulation of pro- and anti-senescing activities. Ethylene and cytokinin are major antagonistic regulatory hormones that control the timing and progression rate of leaf senescence. To identify the roles of these hormones in the regulation of leaf senescence in Arabidopsis, global gene expression profiles in detached leaves of the wild type, an ethylene-insensitive mutant (ein2/ore3), and a constitutive cytokinin response mutant (ahk3/ore12) were investigated during dark-induced leaf senescence.
View Article and Find Full Text PDFPlants undergo developmental changes throughout their life history. Senescence, the final stage in the life history of a leaf, is an important and unique developmental process whereby plants relocate nutrients from leaves to other developing organs, such as seeds, stems, or roots. Recent attempts to answer fundamental questions about leaf senescence have employed a combination of new ideas and advanced technologies.
View Article and Find Full Text PDFFlag leaves (FL) and second leaves (SL) in rice show differential aging patterns during monocarpic senescence. Coordination of aging programs between FL and SL is important for grain yield and quality. However, the molecular bases for differential aging programs between FL and SL have not been systematically explored in rice.
View Article and Find Full Text PDFCurr Opin Plant Biol
October 2016
Leaf senescence is finely tuned by many regulatory factors such as NAC (NAM/ATAF/CUC) transcription factors (TFs). NACs comprise one of the largest families of TFs in plants, many of which are differentially regulated during leaf senescence and play a major role in leaf senescence. Recent studies advanced our understanding on the structural and functional features of NAC TFs including target binding specificities of the N-terminal DNA binding domain and dynamic interaction of the C-terminal intrinsically disordered domain with other proteins.
View Article and Find Full Text PDFPlant leaves, harvesting light energy and fixing CO2, are a major source of foods on the earth. Leaves undergo developmental and physiological shifts during their lifespan, ending with senescence and death. We characterized the key regulatory features of the leaf transcriptome during aging by analyzing total- and small-RNA transcriptomes throughout the lifespan of Arabidopsis (Arabidopsis thaliana) leaves at multidimensions, including age, RNA-type, and organelle.
View Article and Find Full Text PDFLeaf senescence is not only primarily governed by developmental age but also influenced by various internal and external factors. Although some genes that control leaf senescence have been identified, the detailed regulatory mechanisms underlying integration of diverse senescence-associated signals into the senescence programs remain to be elucidated. To dissect the regulatory pathways involved in leaf senescence, we isolated the not oresara1-1 (nore1-1) mutant showing accelerated leaf senescence phenotypes from an EMS-mutagenized Arabidopsis thaliana population.
View Article and Find Full Text PDFPlant roots anchor the plant to the soil and absorb water and nutrients for growth. Understanding the molecular mechanisms regulating root development is essential for improving plant survival and agricultural productivity. Extensive molecular genetic studies have provided important information on crucial components for the root development control over the last few decades.
View Article and Find Full Text PDFAn efficient in vitro protocol has been established for somatic embryogenesis and plantlet conversion of Korean wild ginseng (Panax ginseng Meyer). Wild-type and mutant adventitious roots derived from the ginseng produced calluses on Murashige and Skoog (MS) medium supplemented with 0.5 mg/L 2,4-dichlorophenoxyacetic acid and 0.
View Article and Find Full Text PDFLeaf senescence is a finely tuned and genetically programmed degeneration process, which is critical to maximize plant fitness by remobilizing nutrients from senescing leaves to newly developing organs. Leaf senescence is a complex process that is driven by extensive reprogramming of global gene expression in a highly coordinated manner. Understanding how gene regulatory networks involved in controlling leaf senescence are organized and operated is essential to decipher the mechanisms of leaf senescence.
View Article and Find Full Text PDFHow do organisms, organs, tissues and cells change their fate when they age towards senescence and death? Plant leaves provide a unique window to explore this question because they show reproducible life history and are readily accessible for experimental assays. Throughout their lifespan, leaves undergo a series of developmental, physiological and metabolic transitions that culminate in senescence and death. Leaf senescence is an 'altruistic death' that allows for the degradation of the nutrients that are produced during the growth phase of the leaf and their redistribution to developing seeds or other parts of the plant, and thus is a strategy that has evolved to maximize the fitness of the plant.
View Article and Find Full Text PDFPhytochromes are red (R)/far-red (FR) photoreceptors that are central to the regulation of plant growth and development. Although it is well known that photoactivated phytochromes are translocated into the nucleus where they interact with a variety of nuclear proteins and ultimately regulate genome-wide transcription, the mechanisms by which these photoreceptors function are not completely understood. In an effort to enhance our understanding of phytochrome-mediated light signaling networks, we attempted to identify novel proteins interacting with phytochrome B (phyB).
View Article and Find Full Text PDFLeaf senescence is a key physiological process in all plants. Its onset is tightly controlled by transcription factors, of which NAC factor ORE1 (ANAC092) is crucial in Arabidopsis thaliana. Enhanced expression of ORE1 triggers early senescence by controlling a downstream gene network that includes various senescence-associated genes.
View Article and Find Full Text PDF